scispace - formally typeset
Topic

Autoencoder

About: Autoencoder is a(n) research topic. Over the lifetime, 11947 publication(s) have been published within this topic receiving 223852 citation(s). The topic is also known as: autoencoders & AE.

...read more

Papers
More filters

Journal ArticleDOI
28 Jul 2006-Science
Abstract: High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

...read more

14,206 citations


Journal ArticleDOI
TL;DR: Recent work in the area of unsupervised feature learning and deep learning is reviewed, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks.

...read more

Abstract: The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation, and manifold learning.

...read more

8,575 citations


Proceedings Article
Irina Higgins1, Loic Matthey1, Arka Pal1, Christopher P. Burgess1  +4 moreInstitutions (1)
24 Apr 2017-
Abstract: Learning an interpretable factorised representation of the independent data generative factors of the world without supervision is an important precursor for the development of artificial intelligence that is able to learn and reason in the same way that humans do. We introduce beta-VAE, a new state-of-the-art framework for automated discovery of interpretable factorised latent representations from raw image data in a completely unsupervised manner. Our approach is a modification of the variational autoencoder (VAE) framework. We introduce an adjustable hyperparameter beta that balances latent channel capacity and independence constraints with reconstruction accuracy. We demonstrate that beta-VAE with appropriately tuned beta > 1 qualitatively outperforms VAE (beta = 1), as well as state of the art unsupervised (InfoGAN) and semi-supervised (DC-IGN) approaches to disentangled factor learning on a variety of datasets (celebA, faces and chairs). Furthermore, we devise a protocol to quantitatively compare the degree of disentanglement learnt by different models, and show that our approach also significantly outperforms all baselines quantitatively. Unlike InfoGAN, beta-VAE is stable to train, makes few assumptions about the data and relies on tuning a single hyperparameter, which can be directly optimised through a hyper parameter search using weakly labelled data or through heuristic visual inspection for purely unsupervised data.

...read more

2,608 citations


Journal ArticleDOI
Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li1  +1 moreInstitutions (1)
TL;DR: A novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently and is applied for the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction.

...read more

Abstract: Accurate and timely traffic flow information is important for the successful deployment of intelligent transportation systems. Over the last few years, traffic data have been exploding, and we have truly entered the era of big data for transportation. Existing traffic flow prediction methods mainly use shallow traffic prediction models and are still unsatisfying for many real-world applications. This situation inspires us to rethink the traffic flow prediction problem based on deep architecture models with big traffic data. In this paper, a novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently. A stacked autoencoder model is used to learn generic traffic flow features, and it is trained in a greedy layerwise fashion. To the best of our knowledge, this is the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction. Moreover, experiments demonstrate that the proposed method for traffic flow prediction has superior performance.

...read more

1,838 citations


Posted Content
29 Dec 2011-arXiv: Learning
Abstract: We consider the problem of building high-level, class-specific feature detectors from only unlabeled data. For example, is it possible to learn a face detector using only unlabeled images? To answer this, we train a 9-layered locally connected sparse autoencoder with pooling and local contrast normalization on a large dataset of images (the model has 1 billion connections, the dataset has 10 million 200x200 pixel images downloaded from the Internet). We train this network using model parallelism and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three days. Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not. Control experiments show that this feature detector is robust not only to translation but also to scaling and out-of-plane rotation. We also find that the same network is sensitive to other high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained our network to obtain 15.8% accuracy in recognizing 20,000 object categories from ImageNet, a leap of 70% relative improvement over the previous state-of-the-art.

...read more

1,796 citations


Network Information
Related Topics (5)
Deep learning

79.8K papers, 2.1M citations

95% related
Feature learning

15.5K papers, 684.7K citations

94% related
Hyperparameter

3.5K papers, 103K citations

94% related
Supervised learning

20.8K papers, 710.5K citations

94% related
Convolutional neural network

74.7K papers, 2M citations

93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202276
20213,088
20203,006
20192,417
20181,585
2017832

Top Attributes

Show by:

Topic's top 5 most impactful authors

Angshul Majumdar

28 papers, 481 citations

Björn Schuller

14 papers, 1K citations

Yoshua Bengio

12 papers, 10K citations

Herman Kamper

11 papers, 218 citations

Hugo Larochelle

10 papers, 1.6K citations