scispace - formally typeset
Search or ask a question
Topic

Autonomous system (mathematics)

About: Autonomous system (mathematics) is a research topic. Over the lifetime, 1648 publications have been published within this topic receiving 38373 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An autonomous materials discovery methodology for functional inorganic compounds is demonstrated which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools.
Abstract: Active learning—the field of machine learning (ML) dedicated to optimal experiment design—has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools. This robot science enables science-over-the-network, reducing the economic impact of scientists being physically separated from their labs. The real-time closed-loop, autonomous system for materials exploration and optimization (CAMEO) is implemented at the synchrotron beamline to accelerate the interconnected tasks of phase mapping and property optimization, with each cycle taking seconds to minutes. We also demonstrate an embodiment of human-machine interaction, where human-in-the-loop is called to play a contributing role within each cycle. This work has resulted in the discovery of a novel epitaxial nanocomposite phase-change memory material. Machine learning driven research holds big promise towards accelerating materials’ discovery. Here the authors demonstrate CAMEO, which integrates active learning Bayesian optimization with practical experiments execution, for the discovery of new phase- change materials using X-ray diffraction experiments.

155 citations

Journal ArticleDOI
TL;DR: It is shown that for certain parameters, besides the point attractor and chaotic attractor, this system also has a coexisting stable limit cycle, demonstrating that this new system is truly complicated and interesting.
Abstract: For a dynamical system described by a set of autonomous ordinary differential equations, an attractor can be a point, a periodic cycle, or even a strange attractor. Recently, a new chaotic system with only one stable equilibrium was described, which locally converges to the stable equilibrium but is globally chaotic. This paper further shows that for certain parameters, besides the point attractor and chaotic attractor, this system also has a coexisting stable limit cycle, demonstrating that this new system is truly complicated and interesting.

150 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced a 3D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing attractors.
Abstract: This paper introduces a new 3-D quadratic autonomous system, which can generate two coexisting single-wing chaotic attractors and a pair of diagonal double-wing chaotic attractors. More importantly, the system can generate a four-wing chaotic attractor with very complicated topological structures over a large range of parameters. Some basic dynamical behaviors and the compound structure of the new 3-D system are investigated. Detailed bifurcation analysis illustrates the evolution processes of the system among two coexisting sinks, two coexisting periodic orbits, two coexisting single-wing chaotic attractors, major and minor diagonal double-wing chaotic attractors, and a four-wing chaotic attractor. Poincare-map analysis shows that the system has extremely rich dynamics. The physical existence of the four-wing chaotic attractor is verified by an electronic circuit. Finally, spectral analysis shows that the system has an extremely broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.

140 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the general principles of autonomy and the proposed concepts, methods and technologies to realize autonomous processes in assembly systems, different approaches for design and autonomous operation of assembly, and future trends towards fully autonomous components of an assembly system as well as autonomous parts and products.

139 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Nonlinear system
208.1K papers, 4M citations
83% related
Wireless sensor network
142K papers, 2.4M citations
82% related
Artificial neural network
207K papers, 4.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202228
202167
202081
2019101
201863