scispace - formally typeset
Search or ask a question
Topic

Autosome

About: Autosome is a research topic. Over the lifetime, 3923 publications have been published within this topic receiving 136474 citations. The topic is also known as: somatic chromosome & GO:0030849.


Papers
More filters
Journal ArticleDOI
19 Jun 2003-Nature
TL;DR: The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length, and is a mosaic of heterochromatic sequences and three classes of euchromatics sequences: X-transposed, X-degenerate and ampliconic.
Abstract: The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.

2,022 citations

Journal ArticleDOI
18 May 2000-Nature
TL;DR: In this article, the authors reported the sequence and gene catalogue of the long arm of chromosome 21 and sequenced 33,546,361 base pairs (bp) of DNA with very high accuracy, the largest contig being 25,491,867 bp.
Abstract: Chromosome 21 is the smallest human autosome. An extra copy of chromosome 21 causes Down syndrome, the most frequent genetic cause of significant mental retardation, which affects up to 1 in 700 live births. Several anonymous loci for monogenic disorders and predispositions for common complex disorders have also been mapped to this chromosome, and loss of heterozygosity has been observed in regions associated with solid tumours. Here we report the sequence and gene catalogue of the long arm of chromosome 21. We have sequenced 33,546,361 base pairs (bp) of DNA with very high accuracy, the largest contig being 25,491,867 bp. Only three small clone gaps and seven sequencing gaps remain, comprising about 100 kilobases. Thus, we achieved 99.7% coverage of 21q. We also sequenced 281,116 bp from the short arm. The structural features identified include duplications that are probably involved in chromosomal abnormalities and repeat structures in the telomeric and pericentromeric regions. Analysis of the chromosome revealed 127 known genes, 98 predicted genes and 59 pseudogenes.

1,404 citations

Journal ArticleDOI
01 Sep 2000-Genetics
TL;DR: Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome.
Abstract: Many previous estimates of the mutation rate in humans have relied on screens of visible mutants. We investigated the rate and pattern of mutations at the nucleotide level by comparing pseudogenes in humans and chimpanzees to (i) provide an estimate of the average mutation rate per nucleotide, (ii) assess heterogeneity of mutation rate at different sites and for different types of mutations, (iii) test the hypothesis that the X chromosome has a lower mutation rate than autosomes, and (iv) estimate the deleterious mutation rate. Eighteen processed pseudogenes were sequenced, including 12 on autosomes and 6 on the X chromosome. The average mutation rate was estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation. Rates of mutation for both transitions and transversions at CpG dinucleotides are one order of magnitude higher than mutation rates at other sites. Single nucleotide substitutions are 10 times more frequent than length mutations. Comparison of rates of evolution for X-linked and autosomal pseudogenes suggests that the male mutation rate is 4 times the female mutation rate, but provides no evidence for a reduction in mutation rate that is specific to the X chromosome. Using conservative calculations of the proportion of the genome subject to purifying selection, we estimate that the genomic deleterious mutation rate (U) is at least 3. This high rate is difficult to reconcile with multiplicative fitness effects of individual mutations and suggests that synergistic epistasis among harmful mutations may be common.

1,217 citations

Journal ArticleDOI
TL;DR: The frequently disproportionate effects of the sex chromosomes on interspecific inviability or sterility are consistent with the hypothesis that the gene differences concerned involve recessive or partially recessive alleles fixed by selection.
Abstract: We develop models of the rates of evolution at sex-linked and autosomal loci and of the rates of fixation of chromosomal rearrangements involving sex chromosomes and autosomes. We show that the substitution of selectively favorable mutations often proceeds more rapidly for X- or Y-linked loci than for the autosomes, provided that mutations are recessive or partially recessive on the average. Selection acting on a quantitative character is expected to result in similar long-term rates of gene substitution for X-linked and autosomal loci, unless there is strong directional dominance. Short-term responses to such selection often preferentially fix alleles at autosomal loci. The fixation of slightly deleterious alleles by random drift and the stochastic turnover of alleles at loci controlling quantitative characters under stabilizing selection usually proceed somewhat more slowly at sex-linked loci. In contrast, the fixation of underdominant chromosomal rearrangements by random genetic drift is faster with se...

1,040 citations

Book
01 Apr 1983
TL;DR: The catalogue should prove useful for any clinician treating patients with autosomal chromosome aberrations as well as for physicians and biologists working in cytogenic laboratories and human genetic institutes.
Abstract: This text presents a comprehensive and updated catalogue of the already large, and rapidly growing number of chromosome aberrations in man. The consistent structure of the text and references provide for rapid orientation. The catalogue should prove useful for any clinician treating patients with autosomal chromosome aberrations as well as for physicians and biologists working in cytogenic laboratories and human genetic institutes.

787 citations


Network Information
Related Topics (5)
Exon
38.3K papers, 1.7M citations
85% related
Allele
30.6K papers, 1.2M citations
84% related
Locus (genetics)
42.7K papers, 2M citations
84% related
Gene
211.7K papers, 10.3M citations
83% related
Mutation
45.2K papers, 2.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022154
202192
202088
201972
201887