Topic
Auxiliary memory
About: Auxiliary memory is a research topic. Over the lifetime, 13444 publications have been published within this topic receiving 203855 citations. The topic is also known as: storage & computer storage.
Papers published on a yearly basis
Papers
More filters
Proceedings Article•
[...]
TL;DR: This paper proposed an end-to-end memory network with a recurrent attention model over a possibly large external memory, which can be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol.
Abstract: We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network [23] but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch [2] to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering [22] and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.
1,799 citations
[...]
TL;DR: Tight upper and lower bounds are provided for the number of inputs and outputs (I/OS) between internal memory and secondary storage required for five sorting-related problems: sorting, the fast Fourier transform (FFT), permutation networks, permuting, and matrix transposition.
Abstract: We provide tight upper and lower bounds, up to a constant factor, for the number of inputs and outputs (I/OS) between internal memory and secondary storage required for five sorting-related problems: sorting, the fast Fourier transform (FFT), permutation networks, permuting, and matrix transposition. The bounds hold both in the worst case and in the average case, and in several situations the constant factors match. Secondary storage is modeled as a magnetic disk capable of transferring P blocks each containing B records in a single time unit; the records in each block must be input from or output to B contiguous locations on the disk. We give two optimal algorithms for the problems, which are variants of merge sorting and distribution sorting. In particular we show for P = 1 that the standard merge sorting algorithm is an optimal external sorting method, up to a constant factor in the number of I/Os. Our sorting algorithms use the same number of I/Os as does the permutation phase of key sorting, except when the internal memory size is extremely small, thus affirming the popular adage that key sorting is not faster. We also give a simpler and more direct derivation of Hong and Kung's lower bound for the FFT for the special case B = P = O(1).
1,281 citations
[...]
TL;DR: A machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer.
Abstract: Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
1,158 citations
[...]
TL;DR: A framework is used to examine previous individual differences studies of working memory capacity, and new evidence is examined on the basis of predictions of the framework to performance on immediate free recall.
Abstract: Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2 components: a dynamic attention component (primary memory) and a probabilistic cue-dependent search component (secondary memory). This framework is used to examine previous individual differences studies of working memory capacity, and new evidence is examined on the basis of predictions of the framework to performance on immediate free recall. It is suggested that individual differences in working memory capacity are partially due to the ability to maintain information accessible in primary memory and the ability to search for information from secondary memory.
1,092 citations
Proceedings Article•
[...]
TL;DR: The ability of a memory-augmented neural network to rapidly assimilate new data, and leverage this data to make accurate predictions after only a few samples is demonstrated.
Abstract: Despite recent breakthroughs in the applications of deep neural networks, one setting that presents a persistent challenge is that of "one-shot learning." Traditional gradient-based networks require a lot of data to learn, often through extensive iterative training. When new data is encountered, the models must inefficiently relearn their parameters to adequately incorporate the new information without catastrophic interference. Architectures with augmented memory capacities, such as Neural Turing Machines (NTMs), offer the ability to quickly encode and retrieve new information, and hence can potentially obviate the downsides of conventional models. Here, we demonstrate the ability of a memory-augmented neural network to rapidly assimilate new data, and leverage this data to make accurate predictions after only a few samples. We also introduce a new method for accessing an external memory that focuses on memory content, unlike previous methods that additionally use memory location-based focusing mechanisms.
1,044 citations