scispace - formally typeset
Search or ask a question
Topic

Axial compressor

About: Axial compressor is a research topic. Over the lifetime, 12035 publications have been published within this topic receiving 127766 citations.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control was made at the NASA Lewis Research Center.
Abstract: This paper presents the first attempt to stabilize rotating stall in a single-stage transonic axial flow compressor with inlet distortion using active feedback control. The experiments were conducted at the NASA Lewis Research Center on a single-stage transonic core compressor inlet stage. An array of 12 jet injectors located upstream of the compressor was used for forced response testing and feedback stabilization. Results for a circumferential total pressure distortion of about one dynamic head and a 120 deg extent (DC(60) = 0.61) are reported in this paper. Part I (Spakovszky et al., 1999) reports results for radial distortion. Control laws were designed using empirical transfer function estimates determined from forced response results. Distortion introduces coupling between the harmonics of circumferential pressure perturbations, requiring multivariable identification and control design techniques. The compressor response displayed a strong first spatial harmonic, dominated by the well-known incompressible Moore-Greitzer mode. Steady axisymmetric injection of 4 percent of the compressor mass flow resulted in a 6.2 percent reduction of stalling mass flow. Constant gain feedback, using unsteady asymmetric injection, yielded a further range extension of 9 percent. A more sophisticated robust H controller allowed a reduction in stalling mass flow of 10.2 percent relative to steady injection, yielding a total reduction in stalling mass flow of 16.4 percent.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines is investigated.

47 citations

Journal ArticleDOI
TL;DR: Finite element calculations are performed of blood flow in the carotid artery bifurcation under physiological flow conditions and the numerical model is well capable in predicting axial and secondary flow of incompressible Newtonian fluids in rigid-walled three-dimensional geometries.
Abstract: In the present study, finite element calculations are performed of blood flow in the carotid artery bifurcation under physiological flow conditions. The numerical results are compared in detail with laser-Doppler velocity measurements carried out in a perspex model. It may be concluded that the numerical model as presented here is well capable in predicting axial and secondary flow of incompressible Newtonian fluids in rigid-walled three-dimensional geometries. With regard to the flow phenomena occurring, a large region with reversed axial flow is found in the carotid sinus opposite to the flow divider. This region starts to grow at peak systole, has its maximal shape at minimal flow rate and totally disappears at the start of the acceleration phase. C-shaped axial velocity contours are formed in the deceleration phase, which are highly influenced by secondary flows. These latter flows are mainly induced by centrifugal forces, flow branching, and tapering of the carotid sinus. Lowering the sinus angle, the angle between the main branch and the carotid sinus, results in a smaller region with reversed axial flow.

47 citations

Patent
23 Jul 2001
TL;DR: A counter-rotating axial flow fan for cooling electronic components comprising two or more impellers with narrow chord blades is presented in this article, where the blades of the impellers are configured so as to cause air to flow in the same axial direction.
Abstract: A counter-rotating axial flow fan for cooling electronic components comprising two or more impellers with narrow chord blades. At least one impeller rotates in a first direction and at least one impeller rotates in a second direction opposite to the first direction. The blades of the impellers are configured so as to cause air to flow in the same axial direction. The air flow generated by this counter-rotating fan is substantially greater than the air flow of an otherwise identical co-rotating fan.

47 citations

Patent
07 Feb 2011
TL;DR: A turbine engine includes a plurality of variable fan inlet guide vanes as discussed by the authors, which allow the ability to control engine stability even though the fan-turbine rotor assembly is directly coupled to the axial compressor at a fixed rate.
Abstract: A turbine engine includes a plurality of variable fan inlet guide vanes. Where the turbine engine is a tip turbine engine, the variable fan inlet guide vanes permit the ability to control engine stability even though the fan-turbine rotor assembly is directly coupled to the axial compressor at a fixed rate. The fan inlet guide vanes may be actuated from an inner diameter of the fan inlet guide vanes.

47 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
87% related
Laminar flow
56K papers, 1.2M citations
86% related
Heat exchanger
184.2K papers, 1M citations
82% related
Turbulence
112.1K papers, 2.7M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202398
2022304
2021217
2020288
2019316
2018353