scispace - formally typeset
Search or ask a question
Topic

Axial compressor

About: Axial compressor is a research topic. Over the lifetime, 12035 publications have been published within this topic receiving 127766 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe a novel way of prescribing computational fluid dynamics (CFD) boundary conditions for axial-flow compressors based on extending the standard single passage computational domain by adding an intake upstream and a variable nozzle downstream.
Abstract: This paper describes a novel way of prescribing computational fluid dynamics (CFD) boundary conditions for axial-flow compressors. The approach is based on extending the standard single passage computational domain by adding an intake upstream and a variable nozzle downstream. Such a route allows us to consider any point on a given speed characteristic by simply modifying the nozzle area, the actual boundary conditions being set to atmospheric ones in all cases. Using a fan blade, it is shown that the method not only allows going past the stall point but also captures the typical hysteresis loop behavior of compressors.

85 citations

Proceedings ArticleDOI
04 Jun 2001
TL;DR: In this paper, the authors used the concept of a tip platform extension that is a very short "winglet" obtained by slightly extending the tip platform in the tangential direction.
Abstract: Aerodynamic losses due to the formation of a leakage vortex near the tip section of rotor blades form a significant part of viscous losses in axial flow turbines. The leakage flow, mainly induced by the pressure differential between the pressure side and suction side of a rotor tip section, usually rolls into a streamwise vortical structure near the suction side part of the blade tip. The current study uses the concept of a tip platform extension that is a very short “winglet” obtained by slightly extending the tip platform in the tangential direction. The use of a pressure side tip extension can significantly affect the local aerodynamic field by weakening the leakage vortex structure. Phase averaged, time accurate total pressure measurements downstream of a single stage turbine facility are provided from a total pressure probe that has a time response of 150 kHz. Complete total pressure maps in all of the 29 rotor exit planes are measured accurately. Various pressure and suction side extension configurations are compared against a baseline case. The current investigation performed in the Axial Flow Turbine Research Facility (AFTRF) of the Pennsylvania State University shows that significant total to total efficiency gain is possible by the use of tip platform extensions.Copyright © 2001 by ASME

85 citations

Journal ArticleDOI
TL;DR: In this article, the impact of axially swept and tangentially leaned blades on the aerodynamic behavior of transonic axial-flow compressor rotors was analyzed separately, and the overall features of three-dimensional shock structure, shock-boundary layer interaction, and wake development were calculated well by the numerical solution.

84 citations

Journal ArticleDOI
TL;DR: The objectives are to suppress rotating stall and surge, to extend the stable operating range of the compressor system, and to enlarge domains of attraction of stable equilibria using feedback control methods.
Abstract: Modeling and control for axial flow compression systems have received great attention in recent years. The objectives are to suppress rotating stall and surge, to extend the stable operating range of the compressor system, and to enlarge domains of attraction of stable equilibria using feedback control methods. The success of this research field will significantly improve compressor performance and thus future aeroengine performance. This paper surveys the research literature and summarizes the major developments in this active research field, focusing on the modeling and control perspectives to rotating stall and surge for axial flow compressors.

84 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: In this article, the fundamental flow mechanisms of circumferential grooves in the casing of a transonic compressor and their influence on compressor stall margin were investigated and three different groove configurations were tested.
Abstract: Experimental and numerical investigations were conducted to study the fundamental flow mechanisms of circumferential grooves in the casing of a transonic compressor and their influence on compressor stall margin. Three different groove configurations were tested in a highly loaded transonic compressor. Experimental results show that circumferential grooves increase the stall margin of the compressor at the tested operating condition. Grooves with a much smaller depth than conventional designs are shown to be similarly effective in increasing the stall margin. Steady-state Navier-Stokes analyses were performed to study flow structures associated with each casing treatment. The numerical procedure calculates the overall effects of the circumferential grooves correctly. Detailed investigation of calculated flow fields indicates that losses are generated by interaction between the main passage flow and flow exiting the grooves. The grooves increase the stall margin by reducing the flow incidence angle on the pressure side of the leading edge, despite an overall increase in the endwall boundary layer thickness. This is due to complex interaction of the main passage flow with the additional radial and tangential flows created by the grooves.Copyright © 2002 by ASME

84 citations


Network Information
Related Topics (5)
Reynolds number
68.4K papers, 1.6M citations
87% related
Laminar flow
56K papers, 1.2M citations
86% related
Heat exchanger
184.2K papers, 1M citations
82% related
Turbulence
112.1K papers, 2.7M citations
82% related
Heat transfer
181.7K papers, 2.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202398
2022304
2021217
2020288
2019316
2018353