scispace - formally typeset
Search or ask a question

Showing papers on "Bacillus anthracis published in 2011"


Journal ArticleDOI
TL;DR: This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics for linking phenotype to genotype in Amerithrax.
Abstract: Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.

157 citations


Journal ArticleDOI
TL;DR: The DNA probe functionalized QCM biosensor demonstrated stable, pollution-free, real-time sensing, and could find application in the rapid detection of B. anthracis.

119 citations


Journal ArticleDOI
TL;DR: Comparisons with vancomycin and mutants in the hinge region suggest that nisin utilizes lipid II as the germinated spore target during outgrowth inhibition and thatnisin-mediated membrane disruption is essential to inhibit spore development into vegetative cells.
Abstract: The lantibiotic nisin inhibits growth of vegetative Gram-positive bacteria by binding to lipid II, which disrupts cell wall biosynthesis and facilitates pore formation. Nisin also inhibits the outgrowth of bacterial spores, including spores of Bacillus anthracis, whose structural and biochemical properties are fundamentally different from those of vegetative bacteria. The molecular basis of nisin inhibition of spore outgrowth had not been identified, as previous studies suggested that inhibition of spore outgrowth involved either covalent binding to a spore target or loss of membrane integrity; disruption of cell wall biosynthesis via binding to lipid II had not been investigated. To provide insights into the latter possibility, the effects of nisin were compared with those of vancomycin, another lipid II binding antibiotic that inhibits cell wall biosynthesis but does not form pores. Nisin and vancomycin both inhibited the replication of vegetative cells, but only nisin inhibited the transition from a germinated spore to a vegetative cell. Moreover, vancomycin prevented nisin's activity in competition studies, suggesting that the nisin-lipid II interaction is important for inhibition of spore outgrowth. In experiments with fluorescently labeled nisin, no evidence was found for a covalent mechanism for inhibition of spore outgrowth. Interestingly, mutants in the hinge region (N20P/M21P and M21P/K22P) that still bind lipid II but cannot form pores had potent antimicrobial activity against vegetative B. anthracis cells but did not inhibit spore outgrowth. Therefore, pore formation is essential for the latter activity but not the former. Collectively, these studies suggest that nisin utilizes lipid II as the germinated spore target during outgrowth inhibition and that nisin-mediated membrane disruption is essential to inhibit spore development into vegetative cells.

95 citations


Journal ArticleDOI
15 Aug 2011-Toxins
TL;DR: This review summarizes the current status of anti-anthrax mAb development and argues for the potential therapeutic advantage of a cocktail of mAbs that recognize different epitopes or different virulence factors.
Abstract: Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. It not only causes natural infection in humans but also poses a great threat as an emerging bioterror agent. The lethality of anthrax is primarily attributed to the two major virulence factors: toxins and capsule. An extensive effort has been made to generate therapeutically useful monoclonal antibodies to each of the virulence components: protective antigen (PA), lethal factor (LF) and edema factor (EF), and the capsule of B. anthracis. This review summarizes the current status of anti-anthrax mAb development and argues for the potential therapeutic advantage of a cocktail of mAbs that recognize different epitopes or different virulence factors.

84 citations


Journal ArticleDOI
TL;DR: The results indicate that peptidoglycan O-acetylation modulates endogenous muramidase activity affecting the cell-surface properties and morphology of this important pathogen.

84 citations


Journal ArticleDOI
TL;DR: Exposure patterns in dogs reflected known patterns of endemicity and provided new information about anthrax in the ecosystem, which indicated the potential of dogs as indicator species and the utility of serosurveillance.
Abstract: Bacillus anthracis, the bacterium that causes anthrax, is responsible for varying death rates among animal species. Diffi culties in case detection, hazardous or inaccessible carcasses, and misdiagnosis hinder surveillance. Using case reports and a new serologic assay that enables multispecies comparisons, we examined exposure to and illness caused by B. anthracis in different species in the Serengeti ecosystem in Tanzania during 1996–2009 and the utility of serosurveillance. High seroprevalence among carnivores suggested regular nonfatal exposure. Seropositive wildebeest and buffalo showed that infection was not invariably fatal among herbivores, whereas absence of seropositivity in zebras and frequent detection of fatal cases indicated high susceptibility. Exposure patterns in dogs refl ected known patterns of endemicity and provided new information about anthrax in the ecosystem, which indicated the potential of dogs as indicator species. Serosurveillance is a valuable tool for monitoring and detecting anthrax and may shed light on mechanisms responsible for species-specifi c variability in exposure, susceptibility, and mortality rates.

81 citations


Journal ArticleDOI
TL;DR: Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long‐lasting protection conferred by PA immunization.
Abstract: The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.

78 citations


Journal ArticleDOI
TL;DR: It is reported here that B. cereus G9241 causes anthrax‐like disease in immune‐competent mice, which is dependent on each of the two virulence plasmids proposed to provide for anthrax toxin and capsule expression.
Abstract: Bacillus cereus G9241 causes an anthrax-like respiratory illness in humans; however, the molecular mechanisms of disease pathogenesis are not known. Genome sequencing identified two putative virulence plasmids proposed to provide for anthrax toxin (pBCXO1) and/or capsule expression (pBC218). We report here that B. cereus G9241 causes anthrax-like disease in immune-competent mice, which is dependent on each of the two virulence plasmids. pBCXO1 encodes pagA1, the homologue of anthrax protective antigen, as well as hasACB, providing for hyaluronic acid capsule formation, two traits that each contribute to disease pathogenesis. pBC218 harbours bpsX-H, B. cereus exo-polysaccharide, which produce a second capsule. During infection, B. cereus G9241 elaborates both hasACB and bpsX-H capsules, which together are essential for the establishment of anthrax-like disease and the resistance of bacilli to phagocytosis. A single nucleotide deletion causes premature termination of hasA translation in Bacillus anthracis, which is known to escape phagocytic killing by its pXO2 encoded poly-d-γ-glutamic acid (PDGA) capsule. Thus, multiple different gene clusters endow pathogenic bacilli with capsular material, provide for escape from innate host immune responses and aid in establishing the pathogenesis of anthrax-like disease.

70 citations


Journal ArticleDOI
TL;DR: This work has used molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products.

68 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared real-time PCR assay performance between the Applied Biosystems 7300/7500 and the RAZOR instruments for specific detection of the causative agents of anthrax, brucellosis, tularemia and plague.

64 citations


Journal ArticleDOI
TL;DR: Assessment of camelysin and InhA1 levels in culture supernates from sinR-, inhA1-, and calY-null mutants showed that the concentration of InHA1 in the culture supernatant is inversely proportional to the Concentration of Camelysin, consistent with a model in which Inh a1 protease levels are controlled at the transcriptional level by SinR and at the posttranslational level by camelysIn.
Abstract: Bacillus anthracis shares many regulatory loci with the nonpathogenic Bacillus species Bacillus subtilis. One such locus is sinIR, which in B. subtilis controls sporulation, biofilm formation, motility, and competency. As B. anthracis is not known to be motile, to be naturally competent, or to readily form biofilms, we hypothesized that the B. anthracis sinIR regulon is distinct from that of B. subtilis. A genome-wide expression microarray analysis of B. anthracis parental and sinR mutant strains indicated limited convergence of the B. anthracis and B. subtilis SinR regulons. The B. anthracis regulon includes homologues of some B. subtilis SinR-regulated genes, including the signal peptidase gene sipW near the sinIR locus and the sporulation gene spoIIE. The B. anthracis SinR protein also negatively regulates transcription of genes adjacent to the sinIR locus that are unique to the Bacillus cereus group species. These include calY and inhA1, structural genes for the metalloproteases camelysin and immune inhibitor A1 (InhA1), which have been suggested to be associated with virulence in B. cereus and B. anthracis, respectively. Electrophoretic mobility shift assays revealed direct binding of B. anthracis SinR to promoter DNA from strongly regulated genes, such as calY and sipW, but not to the weakly regulated inhA1 gene. Assessment of camelysin and InhA1 levels in culture supernates from sinR-, inhA1-, and calY-null mutants showed that the concentration of InhA1 in the culture supernatant is inversely proportional to the concentration of camelysin. Our data are consistent with a model in which InhA1 protease levels are controlled at the transcriptional level by SinR and at the posttranslational level by camelysin.

Journal ArticleDOI
TL;DR: A case of rapidly progressive, fatal, anthrax-like pneumonia and the overwhelming infection caused by a Bacillus species of uncertain provenance in a patient residing in rural Texas is described and investigated.
Abstract: Context.—Ten years ago a bioterrorism event involving Bacillus anthracis spores captured the nation's interest, stimulated extensive new research on this pathogen, and heightened concern about ille...

Journal ArticleDOI
TL;DR: A novel multiplex real-time PCR for simultaneous specific identification of B. anthracis and discrimination of different B. Anthracis virulence types is presented.

Journal ArticleDOI
TL;DR: The data demonstrated that glucose is an important host environment-derived signaling molecule and that CcpA is a molecular link between environmental sensing and B. anthracis pathogenesis.
Abstract: Sensing environmental conditions is an essential aspect of bacterial physiology and virulence. In Bacillus anthracis, the causative agent of anthrax, transcription of the two major virulence factors, toxin and capsule, is triggered by bicarbonate, a major compound in the mammalian body. Here it is shown that glucose is an additional signaling molecule recognized by B. anthracis for toxin synthesis. The presence of glucose increased the expression of the protective antigen toxin component-encoding gene (pagA) by stimulating induction of transcription of the AtxA virulence transcription factor. Induction of atxA transcription by glucose required the carbon catabolite protein CcpA via an indirect mechanism. CcpA did not bind specifically to any region of the extended atxA promoter. The virulence of a B. anthracis strain from which the ccpA gene was deleted was significantly attenuated in a mouse model of infection. The data demonstrated that glucose is an important host environment-derived signaling molecule and that CcpA is a molecular link between environmental sensing and B. anthracis pathogenesis.

Journal ArticleDOI
TL;DR: The incidence of the disease has decreased in developed countries as a result of vaccination and improved industrial hygiene, and administration of anti-protective antigen (PA) antibody in combination with ciprofloxacin produced 90%-100% survival.
Abstract: Anthrax is a zoonotic disease caused by Bacillus anthracis. It is potentially fatal and highly contagious disease. Herbivores are the natural host. Human acquire the disease incidentally by contact with infected animal or animal products. In the 18th century an epidemic destroyed approximately half of the sheep in Europe. In 1900 human inhalational anthrax occured sporadically in the United States. In 1979 an outbreak of human anthrax occured in Sverdlovsk of Soviet Union. Anthrax continued to represent a world wide presence. The incidence of the disease has decreased in developed countries as a result of vaccination and improved industrial hygiene. Human anthrax clinically presents in three forms, i.e. cutaneous, gastrointestinal and inhalational. About 95% of human anthrax is cutaneous and 5% is inhalational. Gastrointestinal anthrax is very rare (less than 1%). Inhalational form is used as a biological warefare agent. Penicillin, ciprofloxacin (and other quinolones), doxicyclin, ampicillin, imipenem, clindamycin, clarithromycin, vancomycin, chloramphenicol, rifampicin are effective antimicrobials. Antimicrobial therapy for 60 days is recommended. Human anthrax vaccine is available. Administration of anti-protective antigen (PA) antibody in combination with ciprofloxacin produced 90%-100% survival. The combination of CPG-adjuvanted anthrax vaccine adsorbed (AVA) plus dalbavancin significantly improved survival.

Journal ArticleDOI
TL;DR: These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins and potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.
Abstract: Matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometry (MS) is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI) tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA) which combines with lethal factor (LF) and edema factor (EF), forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

Journal ArticleDOI
TL;DR: It is shown that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection.
Abstract: Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection.

Journal ArticleDOI
TL;DR: It is demonstrated that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum, or in the ΔVollum (pXO1‐, pXO2‐, nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress.
Abstract: We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.

Journal ArticleDOI
TL;DR: It is shown that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain are completely degraded at the onset of stationary phase due to the action of proteases.

Journal ArticleDOI
TL;DR: It is hypothesized that an intact purine biosynthetic pathway is required for the virulence of B. anthracis in guinea pigs because both bacilli and toxins were detected in vivo, suggesting that the significant attenuation was associated with a growth defect in vivo.
Abstract: Bacillus anthracis, the etiological agent of anthrax, is a spore-forming, Gram-positive bacterium and a category A biothreat agent. Screening of a library of transposon-mutagenized B. anthracis spores identified a mutant displaying an altered phenotype that harbored a mutated gene encoding the purine biosynthetic enzyme PurH. PurH is a bifunctional protein that catalyzes the final steps in the biosynthesis of the purine IMP. We constructed and characterized defined purH mutants of the virulent B. anthracis Ames strain. The virulence of the purH mutants was assessed in guinea pigs, mice, and rabbits. The spores of the purH mutants were as virulent as wild-type spores in mouse intranasal and rabbit subcutaneous infection models but were partially attenuated in a mouse intraperitoneal model. In contrast, the purH mutant spores were highly attenuated in guinea pigs regardless of the administration route. The reduced virulence in guinea pigs was not due solely to a germination defect, since both bacilli and toxins were detected in vivo, suggesting that the significant attenuation was associated with a growth defect in vivo. We hypothesize that an intact purine biosynthetic pathway is required for the virulence of B. anthracis in guinea pigs.

Journal ArticleDOI
25 Mar 2011-PLOS ONE
TL;DR: A proteomic analysis to identify human serum proteins interacting with B. anthracis spores found that plasminogen (PLG) is a major surface-bound protein resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.
Abstract: The causative agent of anthrax, Bacillus anthracis, is capable of circumventing the humoral and innate immune defense of the host and modulating the blood chemistry in circulation to initiate a productive infection. It has been shown that the pathogen employs a number of strategies against immune cells using secreted pathogenic factors such as toxins. However, interference of B. anthracis with the innate immune system through specific interaction of the spore surface with host proteins such as the complement system has heretofore attracted little attention. In order to assess the mechanisms by which B. anthracis evades the defense system, we employed a proteomic analysis to identify human serum proteins interacting with B. anthracis spores, and found that plasminogen (PLG) is a major surface-bound protein. PLG efficiently bound to spores in a lysine- and exosporium-dependent manner. We identified α-enolase and elongation factor tu as PLG receptors. PLG-bound spores were capable of exhibiting anti-opsonic properties by cleaving C3b molecules in vitro and in rabbit bronchoalveolar lavage fluid, resulting in a decrease in macrophage phagocytosis. Our findings represent a step forward in understanding the mechanisms involved in the evasion of innate immunity by B. anthracis through recruitment of PLG resulting in the enhancement of anti-complement and anti-opsonization properties of the pathogen.

Journal ArticleDOI
TL;DR: This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.
Abstract: During an infection, bacterial pathogens must acquire iron from the host to survive. However, free iron is sequestered in host proteins, which presents a barrier to iron-dependent bacterial replication. In response, pathogens have developed mechanisms to acquire iron from the host during infection. Interestingly, a significant portion of the iron pool is sequestered within heme, which is further bound to host proteins such as hemoglobin. The copious amount of heme-iron makes hemoglobin an ideal molecule for targeted iron uptake during infection. While the study of heme acquisition is well represented in Gram-negative bacteria, the systems and mechanism of heme uptake in Gram-positive bacteria has only recently been investigated. Bacillus anthracis, the causative agent of anthrax disease, represents an excellent model organism to study iron acquisition processes owing to a multifaceted lifecycle consisting of intra- and extracellular phases and a tremendous replicative potential upon infection. This review provides an in depth description of the current knowledge of B. anthracis iron acquisition and applies these findings to a general understanding of how pathogenic Gram-positive bacteria transport this critical nutrient during infection.

Journal ArticleDOI
TL;DR: This B. anthracis specific indel provides a robust and highly-specific chromosomal marker for the identification of this high-risk pathogen from other members of the B. cereus group independent of a strain's virulence.

Journal ArticleDOI
TL;DR: The combination of PGA and LT produced a greater degree of degradation of mitogen-activated protein kinase kinases and an increased level of the activation of the proform of caspase-1 to its processed form compared to the effects of LT alone.
Abstract: The poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors of Bacillus anthracis, which causes a highly lethal infectious disease. The PGA capsule disguises B. anthracis from immune surveillance and allows its unimpeded growth in the host. The PGA capsule recently was reported to be associated with lethal toxin (LT) in the blood of experimentally infected animals (M. H. Cho, et al., Infect. Immun. 78:387-392, 2010). The effect of PGA, either alone or in combination with LT, on macrophages, which play an important role in the progression of anthrax disease, has not been thoroughly investigated. In this study, we investigated the effect of PGA on LT cytotoxicity using the mouse macrophage cell line J774A.1. PGA produced a concentration-dependent enhancement of the cytotoxicity of LT on J774A.1 cells through an enhancement in the binding and accumulation of protective antigen to its receptors. The increase of LT activity was confirmed using Western blot analysis, which showed that the combination of PGA and LT produced a greater degree of degradation of mitogen-activated protein kinase kinases and an increased level of the activation of the proform of caspase-1 to its processed form compared to the effects of LT alone. In addition, mice that received a tail vein injection of both PGA and LT had a significantly increased rate of death compared to that of mice injected with LT alone. PGA had no effect when added to cultures or administered to mice in the absence of LT. These results emphasize the importance of PGA in the pathogenesis of anthrax infection.

Journal ArticleDOI
06 Jun 2011-PLOS ONE
TL;DR: Data suggest that bacillibactin regulation is highly sensitive to iron-concentration, and although regulation of petrobactin is less dependent on iron, it is likely subject to additional levels of regulation that may contribute to virulence of B. anthracis.
Abstract: Background: Bacillus anthracis produces two catecholate siderophores, petrobactin and bacillibactin, under iron-limited conditions. Here, we investigate how variable iron and oxygen concentrations influence the biosynthetic output of both siderophores in B. anthracis. In addition, we describe the differential levels of transcription of select genes within the B. anthracis siderophore biosynthetic operons that are responsible for synthesis of petrobactin and bacillibactin, during variable growth conditions. Methodology/Principal Findings: Accumulation of bacillibactin in B. anthracis Sterne (34F2) and in a mutant lacking the major superoxide dismutase (DsodA1) was almost completely repressed by the addition of 20 mM of iron. In contrast, petrobactin synthesis in both strains continued up to 20 mM of iron. Accumulation of petrobactin and bacillibactin showed a slight increase with addition of low levels of paraquat-induced oxidative stress in wild type B. anthracis Sterne. Cultures grown with high aeration resulted in greater accumulation of petrobactin relative to low aeration cultures, and delayed the repressive effect of added iron. Conversely, iron-depleted cultures grown with low aeration resulted in increased levels of bacillibactin. No difference was found in overall superoxide dismutase (SOD) activity or transcriptional levels of the sodA1 and sodA2 genes between iron-depleted and iron-replete conditions at high or low aeration, suggesting that SOD regulation and iron metabolism are separate in B. anthracis. The highest transcription of the gene asbB, part of the petrobactin biosynthetic operon, occurred under iron-limitation with high aeration, but transcription was readily detectable even under iron-replete conditions and in low aeration. The gene dhbC, a member of the bacillibactin biosynthetic operon, was only transcribed under conditions of iron-depletion, regardless of growth aeration. Conclusion: These data suggest that bacillibactin regulation is highly sensitive to iron-concentration. In contrast, although regulation of petrobactin is less dependent on iron, it is likely subject to additional levels of regulation that may contribute to virulence of B. anthracis.

Journal ArticleDOI
22 Dec 2011-PLOS ONE
TL;DR: The data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. thuringiensis-group bacteria, findings with important ecological and research implications.
Abstract: The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry) proteins, which are pore-forming toxins or pore-forming proteins (PFPs). Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1–2 days, leading to a “Bob” or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1–2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even “non-pathogenic” Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications.

Journal ArticleDOI
TL;DR: This work purifies each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport, indicating that Isd X2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall.

Journal ArticleDOI
TL;DR: It is concluded that the presence of the toxin- and capsule-encoding plasmids pBCXO1 and pBC218 in B. cereus G9241 alone is insufficient to render the strain as virulent as B. anthracis Sterne.
Abstract: Bacillus cereus G9241 was isolated from a welder with a pulmonary anthrax-like illness. The organism contains two megaplasmids, pBCXO1 and pBC218. These plasmids are analogous to the Bacillus anthracis Ames plasmids pXO1 and pXO2 that encode anthrax toxins and capsule, respectively. Here we evaluated the virulence of B. cereus G9241 as well as the contributions of pBCXO1 and pBC218 to virulence. B. cereus G9241 was avirulent in New Zealand rabbits after subcutaneous inoculation and attenuated 100-fold compared to the published 50% lethal dose (LD50) values for B. anthracis Ames after aerosol inoculation. A/J and C57BL/6J mice were comparably susceptible to B. cereus G9241 by both subcutaneous and intranasal routes of infection. However, the LD50s for B. cereus G9241 in both mouse strains were markedly higher than those reported for B. anthracis Ames and more like those of the toxigenic but nonencapsulated B. anthracis Sterne. Furthermore, B. cereus G9241 spores could germinate and disseminate after intranasal inoculation into A/J mice, as indicated by the presence of vegetative cells in the spleen and blood of animals 48 h after infection. Lastly, B. cereus G9241 derivatives cured of one or both megaplasmids were highly attenuated in A/J mice. We conclude that the presence of the toxin- and capsule-encoding plasmids pBCXO1 and pBC218 in B. cereus G9241 alone is insufficient to render the strain as virulent as B. anthracis Ames. However, like B. anthracis, full virulence of B. cereus G9241 for mice requires the presence of both plasmids.

Journal ArticleDOI
TL;DR: Three strains of B. cereus causing severe or fatal pneumonia were isolated and subjected to structural analysis and their structures were compared to SCWPs from B. anthracis, suggesting that these strains share specific structural features and the implications regarding pathogenicity and cell wall structure are discussed.
Abstract: Secondary cell wall polysaccharides (SCWPs) are important structural components of the Bacillus cell wall and contribute to the array of antigens presented by these organisms in both spore and vegetative forms. We previously found that antisera raised to Bacillus anthracis spore preparations cross-reacted with SCWPs isolated from several strains of pathogenic B. cereus, but did not react with other phylogenetically related but nonpathogenic Bacilli, suggesting that the SCWP from B. anthracis and pathogenic B. cereus strains share specific structural features. In this study, SCWPs from three strains of B. cereus causing severe or fatal pneumonia (G9241, 03BB87 and 03BB102) were isolated and subjected to structural analysis and their structures were compared to SCWPs from B. anthracis. Complete structural analysis was performed for the B. cereus G9241 SCWP using NMR spectroscopy, mass spectrometry and derivatization methods. The analyses show that SCWPs from B. cereus G9241 has a glycosyl backbone identical to that of B. anthracis SCWP, consisting of multiple trisaccharide repeats of: →6)-α-d-GlcpNAc-(1 → 4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1→. Both the B. anthracis and pathogenic B. cereus SCWPs are highly substituted at all GlcNAc residues with α- and β-Gal residues, however, only the SCWPs from B. cereus G9241 and 03BB87 carry an additional α-Gal substitution at O-3 of ManNAc residues, a feature lacking in the B. anthracis SCWPs. Both the B. anthracis and B. cereus SCWPs are pyruvylated, with an approximate molecular mass of ≈12,000 Da. The implications of these findings regarding pathogenicity and cell wall structure are discussed.

Journal ArticleDOI
TL;DR: Molecular docking studies aimed at analyzing the three-dimensional positioning of six known inhibitors of Trypanosoma vivax NH in the active site of B. anthracis NH pointed out to the most promising compounds as lead for the design of potential inhibitors of BaNH.
Abstract: Anthrax is a disease caused by Bacillus anthracis, a dangerous biological warfare agent already used for both military and terrorist purposes. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. Having this in mind we have performed molecular docking studies, aiming to analyze the three-dimensional positioning of six known inhibitors of Trypanosoma vivax NH (TvNH) in the active site of B. anthracis NH (BaNH). We also analyzed the main interactions of these compounds with the active site residues of BaNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compounds as lead for the design of potential inhibitors of BaNH. Most of the docking and MD results obtained corroborated to each other. Additionally, the docking results also suggested a good correlation with experimental data.