scispace - formally typeset
Search or ask a question

Showing papers on "Bacillus anthracis published in 2020"


Journal ArticleDOI
TL;DR: The present work has identified the damage by UV222 that leads to the killing of growing cells and spores of some bacteria, many of which are human pathogens, and UV222 also inactivates a herpesvirus, and this radiation generated known mutagenic photoproducts in spore and cell DNA.
Abstract: This study examined the microbicidal activity of 222-nm UV radiation (UV222), which is potentially a safer alternative to the 254-nm UV radiation (UV254) that is often used for surface decontamination. Spores and/or growing and stationary-phase cells of Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus aureus, and Clostridioides difficile and a herpesvirus were all killed or inactivated by UV222 and at lower fluences than with UV254. B. subtilis spores and cells lacking the major DNA repair protein RecA were more sensitive to UV222, as were spores lacking their DNA-protective proteins, the α/β-type small, acid-soluble spore proteins. The spore cores’ large amount of Ca2+-dipicolinic acid (∼25% of the core dry weight) also protected B. subtilis and C. difficile spores against UV222, while spores’ proteinaceous coat may have given some slight protection against UV222. Survivors among B. subtilis spores treated with UV222 acquired a large number of mutations, and this radiation generated known mutagenic photoproducts in spore and cell DNA, primarily cyclobutane-type pyrimidine dimers in growing cells and an α-thyminyl-thymine adduct termed the spore photoproduct (SP) in spores. Notably, the loss of a key SP repair protein markedly decreased spore UV222 resistance. UV222-treated B. subtilis spores germinated relatively normally, and the generation of colonies from these germinated spores was not salt sensitive. The latter two findings suggest that UV222 does not kill spores by general protein damage, and thus, the new results are consistent with the notion that DNA damage is responsible for the killing of spores and cells by UV222. IMPORTANCE Spores of a variety of bacteria are resistant to common decontamination agents, and many of them are major causes of food spoilage and some serious human diseases, including anthrax caused by spores of Bacillus anthracis. Consequently, there is an ongoing need for efficient methods for spore eradication, in particular methods that have minimal deleterious effects on people or the environment. UV radiation at 254 nm (UV254) is sporicidal and commonly used for surface decontamination but can cause deleterious effects in humans. Recent work, however, suggests that 222-nm UV (UV222) may be less harmful to people than UV254 yet may still kill bacteria and at lower fluences than UV254. The present work has identified the damage by UV222 that leads to the killing of growing cells and spores of some bacteria, many of which are human pathogens, and UV222 also inactivates a herpesvirus.

46 citations


Journal ArticleDOI
TL;DR: The emergence of these strains has reignited the debate surrounding classification of the B. cereus sensu lato group and serves as a reminder that the field of medical microbiology is constantly changing and remains an important and ongoing area of research.
Abstract: Emerging strains of Bacillus cereus, traditionally considered a self-limiting foodborne pathogen, have been associated with anthrax-like disease in mammals, including humans. The strains have emerged by divergent evolution and, as exchange of genetic material in the Bacillus genus occurs naturally, it is possible that further isolates will be identified in the future. The strains vary in their genotypes and phenotypes, combining traits of both B. cereus and B. anthracis species. Cases of anthrax-like disease associated with these strains result in similar symptoms and mortality rates as those caused by B. anthracis. The strains are susceptible to frontline antibiotics used in the treatment of anthrax and existing vaccines provide protection in animal models. The emergence of these strains has reignited the debate surrounding classification of the B. cereus sensu lato group and serves as a reminder that the field of medical microbiology is constantly changing and remains an important and ongoing area of research.

40 citations


Journal ArticleDOI
16 Jan 2020
TL;DR: An overview of the evolution of B. anthracis identification methods from the time of the first description of the microorganism until the present day is presented.
Abstract: Rapid and reliable identification of Bacillus anthracis is of great importance, especially in the event of suspected deliberate release of anthrax spores. However, the identification of B. anthracis is challenging due to its high similarity to closely related species. Since Amerithrax in 2001, a lot of effort has been made to develop rapid methods for detection and identification of this microorganism with special focus on easy-to-perform rapid tests for first-line responders. This article presents an overview of the evolution of B. anthracis identification methods from the time of the first description of the microorganism until the present day.

25 citations


Journal ArticleDOI
TL;DR: This study characterize the potential geographic distributions of Bcbva in West Africa and B. anthracis in sub-Saharan Africa using an ecological niche modeling approach and documents likely differences in ecological niche—and consequently in geographic distribution—between BCBva and typical B. Anthracis.
Abstract: Background Bacillus cereus biovar anthracis (Bcbva) is an emergent bacterium closely related to Bacillus anthracis, the etiological agent of anthrax. The latter has a worldwide distribution and usually causes infectious disease in mammals associated with savanna ecosystems. Bcbva was identified in humid tropical forests of Cote d’Ivoire in 2001. Here, we characterize the potential geographic distributions of Bcbva in West Africa and B. anthracis in sub-Saharan Africa using an ecological niche modeling approach. Methodology/Principal findings Georeferenced occurrence data for B. anthracis and Bcbva were obtained from public data repositories and the scientific literature. Combinations of temperature, humidity, vegetation greenness, and soils values served as environmental variables in model calibrations. To predict the potential distribution of suitable environments for each pathogen across the study region, parameter values derived from the median of 10 replicates of the best-performing model for each pathogen were used. We found suitable environments predicted for B. anthracis across areas of confirmed and suspected anthrax activity in sub-Saharan Africa, including an east-west corridor from Ethiopia to Sierra Leone in the Sahel region and multiple areas in eastern, central, and southern Africa. The study area for Bcbva was restricted to West and Central Africa to reflect areas that have likely been accessible to Bcbva by dispersal. Model predicted values indicated potential suitable environments within humid forested environments. Background similarity tests in geographic space indicated statistical support to reject the null hypothesis of similarity when comparing environments associated with B. anthracis to those of Bcbva and when comparing humidity values and soils values individually. We failed to reject the null hypothesis of similarity when comparing environments associated with Bcbva to those of B. anthracis, suggesting that additional investigation is needed to provide a more robust characterization of the Bcbva niche. Conclusions/Significance This study represents the first time that the environmental and geographic distribution of Bcbva has been mapped. We document likely differences in ecological niche—and consequently in geographic distribution—between Bcbva and typical B. anthracis, and areas of possible co-occurrence between the two. We provide information crucial to guiding and improving monitoring efforts focused on these pathogens.

24 citations


Journal ArticleDOI
TL;DR: The spectrum of disease caused by anthrax and the various prevention and treatment options are described and the current landscape of next-generation product candidates under development is discussed.
Abstract: Bacillus anthracis has been identified as a potential military and bioterror agent as it is relatively simple to produce, with spores that are highly resilient to degradation in the environment and easily dispersed. These characteristics are important in describing how anthrax could be used as a weapon, but they are also important in understanding and determining appropriate prevention and treatment of anthrax disease. Today, anthrax disease is primarily enzootic and found mostly in the developing world, where it is still associated with considerable mortality and morbidity in humans and livestock. This review article describes the spectrum of disease caused by anthrax and the various prevention and treatment options. Specifically we discuss the following; (1) clinical manifestations of anthrax disease (cutaneous, gastrointestinal, inhalational and intravenous-associated); (2) immunology of the disease; (3) an overview of animal models used in research; (4) the current World Health Organization and U.S. Government guidelines for investigation, management, and prophylaxis; (5) unique regulatory approaches to licensure and approval of anthrax medical countermeasures; (6) the history of vaccination and pre-exposure prophylaxis; (7) post-exposure prophylaxis and disease management; (8) treatment of symptomatic disease through the use of antibiotics and hyperimmune or monoclonal antibody-based antitoxin therapies; and (9) the current landscape of next-generation product candidates under development.

23 citations


Journal ArticleDOI
TL;DR: The transmission risk of anthrax by infections of wounds due to spore-contaminated soil is considered as very low under the most circumstance and active historic anthrax foci may, however, still pose a risk to the health of deployed soldiers.
Abstract: Anthrax is an infectious disease of relevance for military forces Although spores of Bacillus anthracis obiquitously occur in soil, reports on soil-borne transmission to humans are scarce In this narrative review, the potential of soil-borne transmission of anthrax to humans is discussed based on pathogen-specific characteristics and reports on anthrax in the course of several centuries of warfare In theory, anthrax foci can pose a potential risk of infection to animals and humans if sufficient amounts of virulent spores are present in the soil even after an extended period of time In praxis, however, transmissions are usually due to contacts with animal products and reported events of soil-based transmissions are scarce In the history of warfare, even in the trenches of World War I, reported anthrax cases due to soil-contaminated wounds are virtually absent Both the perspectives and the experience of the Western hemisphere and of former Soviet Republics are presented Based on the accessible data as provided in the review, the transmission risk of anthrax by infections of wounds due to spore-contaminated soil is considered as very low under the most circumstance Active historic anthrax foci may, however, still pose a risk to the health of deployed soldiers

22 citations


Journal ArticleDOI
TL;DR: This work reports three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state and proposes a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.
Abstract: Anthrax toxin is the major virulence factor secreted by Bacillus anthracis, causing high mortality in humans and other mammals. It consists of a membrane translocase, known as protective antigen (PA), that catalyzes the unfolding of its cytotoxic substrates lethal factor (LF) and edema factor (EF), followed by translocation into the host cell. Substrate recruitment to the heptameric PA pre-pore and subsequent translocation, however, are not well understood. Here, we report three high-resolution cryo-EM structures of the fully-loaded anthrax lethal toxin in its heptameric pre-pore state, which differ in the position and conformation of LFs. The structures reveal that three LFs interact with the heptameric PA and upon binding change their conformation to form a continuous chain of head-to-tail interactions. As a result of the underlying symmetry mismatch, one LF binding site in PA remains unoccupied. Whereas one LF directly interacts with a part of PA called α-clamp, the others do not interact with this region, indicating an intermediate state between toxin assembly and translocation. Interestingly, the interaction of the N-terminal domain with the α-clamp correlates with a higher flexibility in the C-terminal domain of the protein. Based on our data, we propose a model for toxin assembly, in which the relative position of the N-terminal α-helices in the three LFs determines which factor is translocated first.

20 citations


Journal ArticleDOI
TL;DR: The data have demonstrated that the B. anthracis capsule inhibits complement fixation and opsonization resulting in reduced phagocytosis by macrophages, thus allowing the bacterial pathogen to evade host immunity.
Abstract: Bacillus anthracis poly-γ-D-glutamic acid (PGA) capsule is an essential virulent factor that helps the bacterial pathogen to escape host immunity. Like other encapsulated bacterial species, the B. anthracis capsule may also inhibit complement-mediated clearance and ensure bacterial survival in the host. Previous reports suggest that B. anthracis spore proteins inhibit complement activation. However, the mechanism through which the B. anthracis capsule imparts a survival advantage to the active bacteria has not been demonstrated till date. Thus, to evaluate the role of the PGA capsule in evading host immunity, we have undertaken the present head-to-head comparative study of the phagocytosis and complement activation of non-encapsulated and encapsulated B. anthracis strains. The encapsulated virulent strain exhibited resistance toward complement-dependent and complement-independent bacterial phagocytosis by human macrophages. The non-encapsulated Sterne strain was highly susceptible to phagocytosis by THP-1 macrophages, after incubation with normal human serum (NHS), heat-inactivated serum, and serum-free media, thus indicating that the capsule inhibited both complement-dependent and complement-independent opsonic phagocytosis. An increased binding of C3b and its subsequent activation to C3c and C3dg, which functionally act as potent opsonins, were observed with the non-encapsulated Sterne strain compared with the encapsulated strain. Other known mediators of complement fixation, IgG, C-reactive protein (CRP), and serum amyloid P component (SAP), also bound more prominently with the non-encapsulated Sterne strain. Studies with complement pathway-specific, component-deficient serum demonstrated that the classical pathway was primarily involved in mediating C3b binding on the non-encapsulated bacteria. Both strains equally bound the complement regulatory proteins C4BP and factor H. Importantly, we demonstrated that the negative charge of the PGA capsule was responsible for the differential binding of the complement proteins between the non-encapsulated and encapsulated strains. At lower pH closer to the isoelectric point of PGA, the neutralization of the negative charge was associated with an increased binding of C3b and IgG with the encapsulated B. anthracis strain. Overall, our data have demonstrated that the B. anthracis capsule inhibits complement fixation and opsonization resulting in reduced phagocytosis by macrophages, thus allowing the bacterial pathogen to evade host immunity.

17 citations


Journal ArticleDOI
TL;DR: The therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide was evaluated and suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens.

16 citations


Journal ArticleDOI
Jia Hu1, Gaobo Zhang1, Leiqin Liang1, Chengfeng Lei1, Xiulian Sun1 
TL;DR: The results suggest that elevated c-di-AMP levels inhibit bacterial growth, reduce expression of S layer components and anthracis toxins as well as reduce virulence in a mouse model of disease.
Abstract: Cyclic di-AMP (c-di-AMP) is a recently identified bacterial second messenger that regulates biological processes. In this study, we found that inactivation of two c-di-AMP phosphodiesterases (PDEs), GdpP and PgpH, resulted in accumulation of 3.8-fold higher c-di-AMP levels than in the parental strain Sterne in Bacillus anthracis and inhibited bacterial growth. Moreover, excess c-di-AMP accumulation decreased bacterial toxin expression, increased sensitivity to osmotic stress and detergent, and attenuated virulence in both C57BL/6J and A/J mice. Complementation of the PDE mutant with a plasmid carrying gdpP or pgpH in trans from a Pspac promoter restored bacterial growth, virulence factor expression, and resistance to detergent. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in B. anthracis that is important for host-pathogen interaction.IMPORTANCE Anthrax is an ancient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis Vegetative cells of this species produce anthrax toxin proteins and S-layer components during infection of mammalian hosts. So far, how the expression of these virulence factors is regulated remains largely unknown. Our results suggest that excess elevated c-di-AMP levels inhibit bacterial growth and reduce expression of S-layer components and anthracis toxins as well as reduce virulence in a mouse model of disease. These results indicate that c-di-AMP signaling plays crucial roles in B. anthracis biology and disease.

16 citations


Journal ArticleDOI
TL;DR: This work model the ecological niche and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications) bioclimate variables and updated soil variables to better inform anthrax surveillance and control in the United States.
Abstract: Bacillus anthracis, the causative pathogen of anthrax, is a spore-forming, environmentally maintained bacterium that continues to be a veterinary health problem with outbreaks occurring primarily in wildlife and livestock. Globally, the genetic populations of B. anthracis include multiple lineages, and each may have different ecological requirements and geographical distributions. It is, therefore, essential to identify environmental associations within lineages to predict geographical distributions and risk areas with improved accuracy. Here, we model the ecological niche and predict the geography of the most widespread sublineage of B. anthracis in the continental United States using updated MERRA-derived (Modern Era Retrospective analysis for Research and Applications; the NASA atmospheric data reanalysis of satellite information with multiple data products) bioclimate variables (i.e., MERRAclim data) and updated soil variables. We filter the occurrence data associated with the A1.a/Western North American sub-lineage of B. anthracis from historical anthrax outbreaks using the multiple-locus variable-number tandem repeat system. In addition, we also incorporate recent cases associated with B. anthracis A1.a sub-lineage from 2008 to 2012 in Montana, Colorado, and Texas. Our results provide the predicted distribution of the A1.a sub-lineage of B. anthracis for the United States with better predictive accuracy and higher spatial resolution than previous estimates. Our prediction serves as an improved disease risk map to better inform anthrax surveillance and control in the United States, particularly the Dakotas and Montana where this sub-lineage is persistent.

Journal ArticleDOI
20 May 2020
TL;DR: A mechanical endospore lysis protocol is developed that allows for the quantitative detection of low levels of B. anthracis endospores and it is suitable for direct quantification, even under resource-limited field conditions, where culturing is not an option.
Abstract: A variety of methods have been established in order to optimize the accessibility of DNA originating from Bacillus anthracis cells and endospores to facilitate highly sensitive molecular diagnostics. However, most endospore lysis techniques have not been evaluated in respect to their quantitative proficiencies. Here, we started by systematically assessing the efficiencies of 20 DNA extraction kits for vegetative B. anthracis cells. Of these, the Epicentre MasterPure kit gave the best DNA yields and quality suitable for further genomic analysis. Yet, none of the kits tested were able to extract reasonable quantities of DNA from cores of the endospores. Thus, we developed a mechanical endospore lysis protocol, facilitating the extraction of high-quality DNA. Transmission electron microscopy or the labelling of spores with the indicator dye propidium monoazide was utilized to assess lysis efficiency. Finally, the yield and quality of genomic spore DNA were quantified by PCR and they were found to be dependent on lysis matrix composition, instrumental parameters, and the method used for subsequent DNA purification. Our final standardized lysis and DNA extraction protocol allows for the quantitative detection of low levels (<50 CFU/mL) of B. anthracis endospores and it is suitable for direct quantification, even under resource-limited field conditions, where culturing is not an option.

Journal ArticleDOI
TL;DR: The determination of VOC profiles lays the groundwork for non-invasive probes of bacterial metabolism and offers prospects for detection of microbe-specific VOC biomarkers from two potential biowarfare agents.
Abstract: We conducted comprehensive (untargeted) metabolic profiling of volatile organic compounds (VOCs) emitted in culture by bacterial taxa Francisella tularensis (F. tularensis) subspecies novicida and Bacillus anthracis (B. anthracis) Sterne, surrogates for potential bacterial bioterrorism agents, as well as selective measurements of VOCs from their fully virulent counterparts, F. tularensis subspecies tularensis strain SCHU S4 and B. anthracis Ames. F. tularensis and B. anthracis were grown in liquid broth for time periods that covered logarithmic growth, stationary, and decline phases. VOCs emitted over the course of the growth phases were collected from the headspace above the cultures using solid phase microextraction (SPME) and were analyzed using gas chromatography-mass spectrometry (GC-MS). We developed criteria for distinguishing VOCs originating from bacteria versus background VOCs (originating from growth media only controls or sampling devices). Analyses of collected VOCs revealed methyl ketones, alcohols, esters, carboxylic acids, and nitrogen- and sulfur-containing compounds that were present in the bacterial cultures and absent (or present at only low abundance) in control samples indicating that these compounds originated from the bacteria. Distinct VOC profiles where observed for F. tularensis when compared with B. anthracis while the observed profiles of each of the two F. tularensis and B. anthracis strains exhibited some similarities. Furthermore, the relative abundance of VOCs was influenced by bacterial growth phase. These data illustrate the potential for VOC profiles to distinguish pathogens at the genus and species-level and to discriminate bacterial growth phases. The determination of VOC profiles lays the groundwork for non-invasive probes of bacterial metabolism and offers prospects for detection of microbe-specific VOC biomarkers from two potential biowarfare agents.

Journal ArticleDOI
TL;DR: Investigation of 49 cases of human anthrax in Uganda found that multiple exposures from handling the carcass of a cow that had died suddenly were significantly associated with cutaneous anthrax, whereas eating meat from that cow was associated with gastrointestinal anthrax.
Abstract: On April 20, 2018, the Kween District Health Office in Kween District, Uganda reported 7 suspected cases of human anthrax. A team from the Uganda Ministry of Health and partners investigated and identified 49 cases, 3 confirmed and 46 suspected; no deaths were reported. Multiple exposures from handling the carcass of a cow that had died suddenly were significantly associated with cutaneous anthrax, whereas eating meat from that cow was associated with gastrointestinal anthrax. Eating undercooked meat was significantly associated with gastrointestinal anthrax, but boiling the meat for >60 minutes was protective. We recommended providing postexposure antimicrobial prophylaxis for all exposed persons, vaccinating healthy livestock in the area, educating farmers to safely dispose of animal carcasses, and avoiding handling or eating meat from livestock that died of unknown causes.

Journal ArticleDOI
18 Aug 2020-PLOS ONE
TL;DR: Predicted suitable niche favoring survival and distribution of anthrax spores as a narrow-restricted corridor within the study area, defined by hot-dry climatic conditions with alkaline soils rich in potassium and calcium is revealed.
Abstract: Bacillus anthracis, the bacteria that causes anthrax, a disease that primarily affects herbivorous animals, is a soil borne endospore-forming microbe. Environmental distribution of viable spores determines risky landscapes for herbivore exposure and subsequent anthrax outbreaks. Spore survival and longevity depends on suitable conditions in its environment. Anthrax is endemic in Queen Elizabeth Protected Area in western Uganda. Periodic historical outbreaks with significant wildlife losses date to 1950s, but B. anthracis ecological niche in the ecosystem is poorly understood. This study used the Maximum Entropy modeling algorithm method to predict suitable niche and environmental conditions that may support anthrax distribution and spore survival. Model inputs comprised 471 presence-only anthrax occurrence data from park management records of 1956-2010, and 11 predictor variables derived from the World Climatic and Africa Soil Grids online resources, selected considering the ecology of anthrax. The findings revealed predicted suitable niche favoring survival and distribution of anthrax spores as a narrow-restricted corridor within the study area, defined by hot-dry climatic conditions with alkaline soils rich in potassium and calcium. A mean test AUC of 0.94 and predicted probability of 0.93 for anthrax presence were registered. The five most important predictor variables that accounted for 93.8% of model variability were annual precipitation (70.1%), exchangeable potassium (12.6%), annual mean temperature (4.3%), soil pH (3.7%) and calcium (3.1%). The predicted suitable soil properties likely originate from existing sedimentary calcareous gypsum rocks. This has implications for long-term presence of B. anthracis spores and might explain the long history of anthrax experienced in the area. However, occurrence of suitable niche as a restricted hot zone offers opportunities for targeted anthrax surveillance, response and establishment of monitoring strategies in QEPA.

Journal ArticleDOI
TL;DR: Azure B microscopy represents an accurate diagnostic test for animal anthrax that can be performed with basic laboratory infrastructure and in the field and provides a practical diagnostic approach for anthrax in low-resource settings that can support surveillance and control efforts for Anthrax-endemic countries globally.
Abstract: Anthrax threatens human and animal health, and people’s livelihoods in many rural communities in Africa and Asia. In these areas, anthrax surveillance is challenged by a lack of tools for on-site detection. Furthermore, cultural practices and infrastructure may affect sample availability and quality. Practical yet accurate diagnostic solutions are greatly needed to quantify anthrax impacts. We validated microscopic and molecular methods for the detection of Bacillus anthracis in field-collected blood smears and identified alternative samples suitable for anthrax confirmation in the absence of blood smears. We investigated livestock mortalities suspected to be caused by anthrax in northern Tanzania. Field-prepared blood smears (n = 152) were tested by microscopy using four staining techniques as well as polymerase chain reaction (PCR) followed by Bayesian latent class analysis. Median sensitivity (91%, CI 95% [84–96%]) and specificity (99%, CI 95% [96–100%]) of microscopy using azure B were comparable to those of the recommended standard, polychrome methylene blue, PMB (92%, CI 95% [84–97%] and 98%, CI 95% [95–100%], respectively), but azure B is more available and convenient. Other commonly-used stains performed poorly. Blood smears could be obtained for <50% of suspected anthrax cases due to local customs and conditions. However, PCR on DNA extracts from skin, which was almost always available, had high sensitivity and specificity (95%, CI 95% [90–98%] and 95%, CI 95% [87–99%], respectively), even after extended storage at ambient temperature. Azure B microscopy represents an accurate diagnostic test for animal anthrax that can be performed with basic laboratory infrastructure and in the field. When blood smears are unavailable, PCR using skin tissues provides a valuable alternative for confirmation. Our findings lead to a practical diagnostic approach for anthrax in low-resource settings that can support surveillance and control efforts for anthrax-endemic countries globally.

Journal ArticleDOI
13 Jan 2020-PLOS ONE
TL;DR: Most of the genotypes are genetically very similar, supporting the hypothesis that all strains evolved from a local common ancestral strain, except for two genotypes representing the branch A. anthracis in Italy.
Abstract: In Italy anthrax is an endemic disease, with a few outbreaks occurring almost every year. We surveyed 234 B. anthracis strains from animals (n = 196), humans (n = 3) and the environment (n = 35) isolated during Italian outbreaks in the years 1972-2018. Despite the considerable genetic homogeneity of B. anthracis, the strains were effectively differentiated using canonical single nucleotide polymorphisms (CanSNPs) assay and multiple-locus variable-number tandem repeat analysis (MLVA). The phylogenetic identity was determined through the characterization of 14 CanSNPs. In addition, a subsequent 31-loci MLVA assay was also used to further discriminate B. anthracis genotypes into subgroups. The analysis of 14 CanSNPs allowed for the identification of four main lineages: A.Br.011/009, A.Br.008/011 (respectively belonging to A.Br.008/009 sublineage, also known Trans-Eurasian or TEA group), A.Br.005/006 and B.Br.CNEVA. A.Br.011/009, the most common subgroup of lineage A, is the major genotype of B. anthracis in Italy. The MLVA analysis revealed the presence of 55 different genotypes in Italy. Most of the genotypes are genetically very similar, supporting the hypothesis that all strains evolved from a local common ancestral strain, except for two genotypes representing the branch A.Br.005/006 and B.Br.CNEVA. The genotyping analysis applied in this study remains a very valuable tool for studying the diversity, evolution, and molecular epidemiology of B. anthracis.

Journal ArticleDOI
TL;DR: The findings show it is possible to obtain pathological data from infections, post hoc, which may be applicable to other pathogens and settings, including clinical, and believe this method is amendable to other bacterial diseases from wild, domestic, and human systems.
Abstract: Bacillus anthracis, the etiological agent of anthrax, is a well-established model organism. For B. anthracis and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host−pathogen contacts at carcass sites, which can occur years after death of the previous host. For the period between contact and death, all of our knowledge is based upon experimental data from domestic livestock and laboratory animals. Here we use a noninvasive method to explore the dynamics of anthrax infections, by evaluating the terminal diversity of B. anthracis in anthrax carcasses. We present an application of population genetics theory, specifically, coalescence modeling, to intrainfection populations of B. anthracis to derive estimates for the duration of the acute phase of the infection and effective population size converted to the number of colony-forming units establishing infection in wild plains zebra (Equus quagga). Founding populations are small, a few colony-forming units, and infections are rapid, lasting roughly between 1 d and 3 d in the wild. Our results closely reflect experimental data, showing that small founding populations progress acutely, killing the host within days. We believe this method is amendable to other bacterial diseases from wild, domestic, and human systems.

Journal ArticleDOI
21 Jun 2020
TL;DR: From these results, it is anticipated this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.
Abstract: Bacillus anthracis, the etiological agent of anthrax disease, is typically diagnosed by immunological and molecular methods such as polymerase chain reaction (PCR). Alternatively, mass spectrometry techniques may aid in confirming the presence of the pathogen or its toxins. However, because of the close genetic relationship between B. anthracis and other members of the Bacillus cereus sensu lato group (such as Bacillus cereus or Bacillus thuringiensis) mis- or questionable identification occurs frequently. Also, bacteriophages such as phage gamma (which is highly specific for B. anthracis) have been in use for anthrax diagnostics for many decades. Here we employed host cell-specific receptor binding proteins (RBP) of (pro)-phages, also known as tail or head fibers, to develop a microscopy-based approach for the facile, rapid and unambiguous detection of B. anthracis cells. For this, the genes of (putative) RBP from Bacillus phages gamma, Wip1, AP50c and from lambdoid prophage 03 located on the chromosome of B. anthracis were selected. Respective phage genes were heterologously expressed in Escherichia coli and purified as fusions with fluorescent proteins. B. anthracis cells incubated with either of the reporter fusion proteins were successfully surface-labeled. Binding specificity was confirmed as RBP fusion proteins did not bind to most isolates of a panel of other B. cereus s.l. species or to more distantly related bacteria. Remarkably, RBP fusions detected encapsulated B. anthracis cells, thus RBP were able to penetrate the poly-γ-d-glutamate capsule of B. anthracis. From these results we anticipate this RBP-reporter assay may be useful for rapid confirmative identification of B. anthracis.

Journal ArticleDOI
TL;DR: Abstract Communicated by Ramaswamy H. Sarma is a post-graduate student of electrical engineering at the University of California, Berkeley and a member of the faculty at the California Institute of Technology, Berkeley.
Abstract: Abstract Communicated by Ramaswamy H. Sarma

Journal ArticleDOI
TL;DR: The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s), and same-day genomic characterization enhances public health emergency response.
Abstract: Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.

Journal ArticleDOI
28 Apr 2020-Mbio
TL;DR: A two- component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil is described, which reveals that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane.
Abstract: Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.

Journal ArticleDOI
TL;DR: It is concluded that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.
Abstract: The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis. Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1β. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1β, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes’ cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.

Journal ArticleDOI
08 Jan 2020
TL;DR: The capabilities of whole genome sequencing (WGS), which can be used as a tool for outbreak analyses and surveillance activities, are demonstrated and the high genomic relatedness of the Italian TEA strains suggests their evolution from a common ancestor.
Abstract: Anthrax is a serious infectious disease caused by the gram-positive and spore-forming bacterium Bacillus anthracis. In Italy, anthrax is an endemic disease with sporadic cases each year and few outbreaks, especially in Southern Italy. However, new foci have been discovered in zones without previous history of anthrax. During summer 2016, an outbreak of anthrax caused the death of four goats in the Abruzzo region, where the disease had not been reported before. In order to investigate the outbreak, we sequenced one strain and compared it to 19 Italian B. anthracis genomes. Furthermore, we downloaded 71 whole genome sequences representing the global distribution of canonical SNP lineages and used them to verify the phylogenetic positioning. To this end, we analyzed and compared the genome sequences using canonical SNPs and the whole genome SNP-based analysis. Our results demonstrate that the outbreak strain belonged to the Trans-Eurasian (TEA) group A.Br.011/009, which is the predominant clade in Central-Southern Italy. In conclusion, the high genomic relatedness of the Italian TEA strains suggests their evolution from a common ancestor, while the spread is supposedly driven by trade as well as human and transhumance activities. Here, we demonstrated the capabilities of whole genome sequencing (WGS), which can be used as a tool for outbreak analyses and surveillance activities.

Journal ArticleDOI
TL;DR: Analysis of a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease provides evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Abstract: Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.

Journal ArticleDOI
TL;DR: A B. subtilis spore vaccine is developed that displays the protective antigen (PA) on its surface and is able to confer active immunity to a murine model based on the results of antibody isotype titration, mucosal antibody identification, and a lethal challenge experiment.
Abstract: Bacillus anthracis is the causative agent of anthrax, a disease of both humans and various animal species, and can be used as a bioterror agent. Effective vaccines are available, but those could benefit from improvements, including increasing the immunity duration, reducing the shot frequency and adverse reactions. In addition, more sophisticated antigen delivery and potentiation systems are urgently required. The protective antigen (PA), one of three major virulence factors associated with anthrax was displayed on the surface of Bacillus subtilis spores, which is a vaccine production host and delivery vector with several advantages such as a low production cost, straightforward administration as it is safe for human consumption and the particulate adjuvanticity. Mice were immunized orally (PO), intranasally (IN), sublingually (SL) or intraperitoneally (IP) with the PA displaying probiotic spore vaccine. Clinical observation, serological analysis and challenge experiment were conducted to investigate the safety and efficacy of the vaccine. A/J mice immunized with the PA spore vaccine via PO, IN, SL, and IP were observed to have increased levels of active antibody titer, isotype profiles and toxin neutralizing antibody in sera, and IgA in saliva. The immunized mice were demonstrated to raise protective immunity against the challenge with lethal B. anthracis spores. In this study, we developed a B. subtilis spore vaccine that displays the PA on its surface and showed that the PA-displaying spore vaccine was able to confer active immunity to a murine model based on the results of antibody isotype titration, mucosal antibody identification, and a lethal challenge experiment.

Journal ArticleDOI
TL;DR: The regulation of sphingomyelinase expression through the PlcR-PapR system, the pathogenicity of bacterial sphingomelinases, and their potential as therapeutic drug targets are described.
Abstract: Bacillus cereus is well known as a causative agent of food poisoning but it also causes bacteremia and endophthalmitis in nosocomial infections. However, as an environmental bacterium that lives in soil, it is often treated as simple contamination by hospitals. In recent years, highly pathogenic B. cereus strains that are similar to Bacillus anthracis have been detected in hospitals. The B. cereus sphingomyelinase contributes to its pathogenicity, as do sphingomyelinases produced by Staphylococcus aureus, Pseudomonas aeruginosa, Helicobacter pylori, and B. anthracis. Highly pathogenic B. cereus produces a large amount of sphingomyelinase. In this review, we describe the regulation of sphingomyelinase expression through the PlcR-PapR system, the pathogenicity of bacterial sphingomyelinases, and their potential as therapeutic drug targets.

Journal ArticleDOI
24 Jan 2020-PLOS ONE
TL;DR: Wild strains grow more rapidly than lab strains demonstrating a greater responsiveness to nutrient availability and sporulation was significantly more rapid in these wild strains compared to lab strains, indicating wild strains are able to sporulate faster due to nutrient limitation while laboratory strains have a decrease in the speed at which they utilize nutrients and an increase in time to sporulation.
Abstract: Bacillus anthracis is the causative agent of anthrax in animals and humans. The organism lies in a dormant state in the soil until introduced into an animal via, ingestion, cutaneous inoculation or inhalation. Once in the host, spores germinate into rapidly growing vegetative cells elaborating toxins. When animals die of anthrax, vegetative bacteria sporulate upon nutrient limitation in the carcass or soil while in the presence of air. After release into the soil environment, spores form a localized infectious zone (LIZ) at and around the carcass. Laboratory strains of B. anthracis produce fewer proteins associated with growth and sporulation compared to wild strains isolated from recent zoonotic disease events. We verified wild strains grow more rapidly than lab strains demonstrating a greater responsiveness to nutrient availability. Sporulation was significantly more rapid in these wild strains compared to lab strains, indicating wild strains are able to sporulate faster due to nutrient limitation while laboratory strains have a decrease in the speed at which they utilize nutrients and an increase in time to sporulation. These findings have implications for disease control at the LIZ as well as on the infectious cycle of this dangerous zoonotic pathogen.

Posted ContentDOI
25 Mar 2020-bioRxiv
TL;DR: Under field conditions, smear samples and tissue samples are most suitable for diagnostic testing of animal anthrax, whereby microscopy can be conducted in affected areas and PCR in in-country reference laboratories, as this method can be implemented in low-resource laboratories and in the field.
Abstract: Background: Anthrax threatens human and animal health, and peoples livelihoods in many rural communities in Africa and Asia. In these areas, anthrax surveillance is challenged by a lack of tools for on-site detection. Furthermore, cultural practices and infrastructure may affect sample availability and quality. Practical yet accurate diagnostic solutions are greatly needed to quantify anthrax impacts. We validated microscopic and molecular methods for the detection of Bacillus anthracis in field-collected blood smears and identified alternative samples suitable for anthrax confirmation in the absence of blood smears. Methodology/Principal Findings: We investigated livestock mortalities suspected to be caused by anthrax in northern Tanzania. Field-prepared blood smears (n = 152) were tested by microscopy using four staining techniques as well as polymerase chain reaction (PCR) followed by Bayesian latent class analysis. Median sensitivity (91%, CI 95% [84-96%]) and specificity (99%, CI 95% [96-100%]) of microscopy using azure B were comparable to those of the recommended standard, polychrome methylene blue, PMB (92%, CI 95% [84-97%] and 98%, CI 95% [95-100%], respectively), but azure B is more available and convenient. Other commonly-used stains performed poorly. Blood smears could be obtained for <50% of suspected anthrax cases due to local customs and conditions. However, PCR on DNA extracts from dried skin, which was almost always available, had high sensitivity and specificity (95%, CI 95% [90-98%] and 95%, CI 95% [87-99%], respectively), even after extended storage at ambient temperature. Conclusions/Significance: Azure B microscopy represents an accurate diagnostic test for animal anthrax that can be performed with basic laboratory infrastructure and in the field. When blood smears are unavailable, PCR using skin tissues provides a valuable alternative for confirmation. Our findings lead to a practical diagnostic approach for anthrax in low-resource settings that can support surveillance and control efforts for anthrax-endemic countries globally.

Journal ArticleDOI
TL;DR: This work states that the identification of novel inhibitors targeting different key-molecules and vital-steps contributing to the overall anthrax pathophysiology could make a difference in anthrax control.
Abstract: Vaccines and therapeutic antibodies are the most crucial components of anthrax prophylaxis (pre- and post-exposure) and treatment. The improvement in the availability and safety profile of vaccines...