scispace - formally typeset
Search or ask a question
Topic

Bacillus anthracis

About: Bacillus anthracis is a research topic. Over the lifetime, 3994 publications have been published within this topic receiving 128122 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared real-time PCR assay performance between the Applied Biosystems 7300/7500 and the RAZOR instruments for specific detection of the causative agents of anthrax, brucellosis, tularemia and plague.

64 citations

Journal ArticleDOI
TL;DR: Comparison of samples from minimally scavenged and fully necropsied carcass sites revealed no statistically significant difference in the level of B. anthracis spore contamination, so the immediate area around a suspected anthrax carcass should be considered substantially contaminated regardless of the condition of the carcass.
Abstract: Soil samples were collected from around fresh and year-old bison carcasses and areas not associated with known carcasses in Wood Buffalo National Park during an active anthrax outbreak in the summer of 2001. Sample selection with a grid provided the most complete coverage of a site. Soil samples were screened for viable Bacillus anthracis spores via selective culture, phenotypic analysis, and PCR. Bacillus anthracis spores were isolated from 28.4% of the samples. The highest concentrations of B. anthracis spores were found directly adjacent to fresh carcasses and invariably corresponded to locations where the soil had been saturated with body fluids escaping the carcass through either natural body orifices or holes torn by scavengers. The majority of positive samples were found within 2 m of both year-old and fresh carcasses and probably originated from scavengers churning up and spreading the body fluid-saturated soil as they fed. Trails of lesser contamination radiating from the carcasses probably resulted from spore dissemination through adhesion to scavengers and through larger scavengers dragging away disarticulated limbs. Comparison of samples from minimally scavenged and fully necropsied carcass sites revealed no statistically significant difference in the level of B. anthracis spore contamination. Therefore, the immediate area around a suspected anthrax carcass should be considered substantially contaminated regardless of the condition of the carcass.

64 citations

Journal ArticleDOI
TL;DR: Results show that the LAMP protocol is a promising method for detecting B. anthracis spores in pure cultures as well as in various simulated powder samples.
Abstract: A loop-mediated isothermal amplification (LAMP) assay system was employed for detecting Bacillus anthracis spores in pure cultures as well as in various simulated powder samples. The specificity of the designed LAMP primer sets was validated by assaying 13 B. anthracis strains and 33 non-B. anthracis species. The detection limits of the LAMP assay were 10 spores/tube for pure cultures and 100 spores/2 mg powder for simulated powder samples. The results show that the LAMP protocol is a promising method for detecting B. anthracis.

64 citations

Journal ArticleDOI
TL;DR: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions.
Abstract: Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml−1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml−1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant.

64 citations

Journal ArticleDOI
05 Feb 2006-Virology
TL;DR: The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases and allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein.

64 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
88% related
Virulence
35.9K papers, 1.3M citations
87% related
Plasmid
44.3K papers, 1.9M citations
84% related
Drug resistance
28.4K papers, 1.1M citations
82% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202381
2022169
202181
2020116
2019106