scispace - formally typeset
Search or ask a question
Topic

Bacillus anthracis

About: Bacillus anthracis is a research topic. Over the lifetime, 3994 publications have been published within this topic receiving 128122 citations.


Papers
More filters
Journal ArticleDOI
09 Jan 2009-PLOS ONE
TL;DR: It is found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores, suggesting that photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.
Abstract: Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis.

57 citations

Journal ArticleDOI
TL;DR: A variety of isotypes and specificities of mAbs were developed that were able to distinguish B. anthracis spores from other Bacillus spores, and these Abs provide a rapid and reliable means of identifying B. anthology spores in vitro and in vivo.
Abstract: All members of the Bacillus genus produce endospores as part of their life cycle; however, it is not possible to determine the identity of spores by casual or morphological examination. The 2001 anthrax attacks demonstrated a need for fast, dependable methods for detecting Bacillus anthracis spores in vitro and in vivo. We have developed a variety of isotypes and specificities of mAbs that were able to distinguish B. anthracis spores from other Bacillus spores. The majority of Abs were directed toward BclA, a major component of the exosporium, although other components were also distinguished. These Abs did not react with vegetative forms. Some Abs distinguished B. anthracis spores from spores of distantly related species in a highly specific manner, whereas others discriminated among strains that are the closest relatives of B. anthracis. These Abs provide a rapid and reliable means of identifying B. anthracis spores, for probing the structure and function of the exosporium, and in the analysis of the life cycle of B. anthracis.

57 citations

Journal ArticleDOI
TL;DR: These strains provide insight into how the monomorphic B. cereus bv anthracis may have emerged and the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants.
Abstract: Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Cote d’Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.

57 citations

Journal ArticleDOI
TL;DR: Results suggest that the incorporation of rhamnose into the spore coat of B. anthracis is required for optimal interaction with macrophages but is not required for full virulence in this animal model.

57 citations

Journal ArticleDOI
TL;DR: This article will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clstridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Abstract: To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.

57 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
88% related
Virulence
35.9K papers, 1.3M citations
87% related
Plasmid
44.3K papers, 1.9M citations
84% related
Drug resistance
28.4K papers, 1.1M citations
82% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202381
2022169
202181
2020116
2019106