scispace - formally typeset
Search or ask a question
Topic

Bacillus anthracis

About: Bacillus anthracis is a research topic. Over the lifetime, 3994 publications have been published within this topic receiving 128122 citations.


Papers
More filters
Journal Article
TL;DR: This method of achieving cell-type specificity is conceptually distinct from, and potentially synergistic with, the more common strategy of retargeting a protein toxin by fusion to a growth factor, cytokine, or antibody.
Abstract: Matrix metalloproteinases (MMPs) are overexpressed in a variety of tumor tissues and cell lines, and their expression is highly correlated to tumor invasion and metastasis To exploit these characteristics in the design of tumor cell-selective cytotoxins, we constructed two mutated anthrax toxin protective antigen (PA) proteins in which the furin protease cleavage site is replaced by sequences selectively cleaved by MMPs These MMP-targeted PA proteins were activated rapidly and selectively on the surface of MMP-overexpressing tumor cells The activated PA proteins caused internalization of a recombinant cytotoxin, FP59, consisting of anthrax toxin lethal factor residues 1-254 fused to the ADP-ribosylation domain of Pseudomonas exotoxin A The toxicity of the mutated PA proteins for MMP-overexpressing cells was blocked by hydroxamate inhibitors of MMPs, including BB94, and by a tissue inhibitor of matrix metalloproteinases (TIMP-2) The mutated PA proteins killed MMP-overexpressing tumor cells while sparing nontumorigenic normal cells when these were grown together in a coculture model, indicating that PA activation occurred on the tumor cell surface and not in the supernatant This method of achieving cell-type specificity is conceptually distinct from, and potentially synergistic with, the more common strategy of retargeting a protein toxin by fusion to a growth factor, cytokine, or antibody

133 citations

Journal ArticleDOI
TL;DR: The potential for flies to mechanically transmit anthrax suggests that fly control should be considered as part of a program for control of epizootic anthrax and supports recent anecdotal reports of fly-bite-associated cutaneous human anthrax.
Abstract: We evaluated the potential of stable flies, Stomoxys calcitrans, and two species of mosquitoes, Aedes aegypti and Aedes taeniorhynchus, to transmit Bacillus anthracis Vollum 1B mechanically. After probing on Hartley guinea pigs with a bacteremia of ca. 10(8.6) CFU of B. anthracis per ml of blood, individual or pools of two to four stable flies or mosquitoes were allowed to continue feeding on either uninfected guinea pigs or A/J mice. All three insect species transmitted lethal anthrax infections to both guinea pigs and mice. Both stable flies and mosquitoes transmitted anthrax, even when they were held at room temperature for 4 h after exposure to the bacteremic guinea pig before being allowed to continue feeding on the susceptible animals. This study confirms that blood-feeding insects can mechanically transmit anthrax and supports recent anecdotal reports of fly-bite-associated cutaneous human anthrax. The potential for flies to mechanically transmit anthrax suggests that fly control should be considered as part of a program for control of epizootic anthrax.

133 citations

Journal ArticleDOI
TL;DR: ETI-204 is an effective therapy for prevention and treatment of inhalational anthrax and rabbits that were protected from inhalational Anthrax by administration of ETI- 204 developed significant titers of PA-specific antibodies.
Abstract: We have developed a therapeutic for the treatment of anthrax using an affinity-enhanced monoclonal antibody (ETI-204) to protective antigen (PA), which is the central cell-binding component of the anthrax exotoxins. ETI-204 administered preexposure by a single intravenous injection of a dose of between 2.5 and 10 mg per animal significantly protected rabbits from a lethal aerosolized anthrax spore challenge (∼60 to 450 times the 50% lethal dose of Bacillus anthracis Ames). Against a similar challenge, ETI-204 administered intramuscularly at a 20-mg dose per animal completely protected rabbits from death (100% survival). In the postexposure setting, intravenous administration of ETI-204 provided protection 24 h (8 of 10) and 36 h (5 of 10) after spore challenge. Administration at 48 h postchallenge, when 3 of 10 animals had already succumbed to anthrax infection, resulted in the survival of 3 of 7 animals (43%) for the duration of the study (28 days). Importantly, surviving ETI-204-treated animals were free of bacteremia by day 10 and remained so until the end of the studies. Only 11 of 51 ETI-204-treated rabbits had positive lung cultures at the end of the studies. Also, rabbits that were protected from inhalational anthrax by administration of ETI-204 developed significant titers of PA-specific antibodies. Presently, the sole therapeutic regimen available to treat infection by inhalation of B. anthracis spores is a 60-day course of antibiotics that is effective only if administered prior to or shortly after exposure. Based upon results reported here, ETI-204 is an effective therapy for prevention and treatment of inhalational anthrax.

133 citations

Journal ArticleDOI
TL;DR: The identification of a region of sequence variability among individual isolates of Bacillus anthracis as well as the two closely related species, Bacillus cereus and Bacillus mycoides, has made a sequence-based approach for the rapid differentiation among members of this group possible.
Abstract: The identification of a region of sequence variability among individual isolates of Bacillus anthracis as well as the two closely related species, Bacillus cereus and Bacillus mycoides, has made a sequence-based approach for the rapid differentiation among members of this group possible. We have identified this region of sequence divergence by comparison of arbitrarily primed (AP)-PCR "fingerprints" generated by an M13 bacteriophage-derived primer and sequencing the respective forms of the only polymorphic fragment observed. The 1,480-bp fragment derived from genomic DNA of the Sterne strain of B. anthracis contained four consecutive repeats of CAATATCAACAA. The same fragment from the Vollum strain was identical except that two of these repeats were deleted. The Ames strain of B. anthracis differed from the Sterne strain by a single-nucleotide deletion. More than 150 nucleotide differences separated B. cereus and B. mycoides from B. anthracis in pairwise comparisons. The nucleotide sequence of the variable fragment from each species contained one complete open reading frame (ORF) (designated vrrA, for variable region with repetitive sequence), encoding a potential 30-kDa protein located between the carboxy terminus of an upstream ORF (designated orf1) and the amino terminus of a downstream ORF (designated lytB). The sequence variation was primarily in vrrA, which was glutamine- and proline-rich (30% of total) and contained repetitive regions. A large proportion of the nucleotide substitutions between species were synonymous. vrrA has 35% identity with the microfilarial sheath protein shp2 of the parasitic worm Litomosoides carinii.

133 citations

Journal ArticleDOI
TL;DR: It is reported that B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues.
Abstract: Bacillus anthracis causes three forms of anthrax: inhalational, gastrointestinal, and cutaneous. Anthrax is characterized by both toxemia, which is caused by secretion of immunomodulating toxins (lethal toxin and edema toxin), and septicemia, which is associated with bacterial encapsulation. Here we report that, contrary to the current view of B. anthracis pathogenesis, B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues. Furthermore, we found that Peyer's patches in the mouse intestine are the primary site of bacterial growth after intragastric inoculation, thus establishing an animal model of gastrointestinal anthrax. All routes of infection progressed to the draining lymph nodes, spleen, lungs, and ultimately the blood. These discoveries were made possible through the development of a novel dynamic mouse model of B. anthracis infection using bioluminescent non-toxinogenic capsulated bacteria that can be visualized within the mouse in real-time, and demonstrate the value of in vivo imaging in the analysis of B. anthracis infection. Our data imply that previously unrecognized portals of bacterial entry demand more intensive investigation, and will significantly transform the current perception of inhalational, gastrointestinal, and cutaneous B. anthracis pathogenesis.

132 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
88% related
Virulence
35.9K papers, 1.3M citations
87% related
Plasmid
44.3K papers, 1.9M citations
84% related
Drug resistance
28.4K papers, 1.1M citations
82% related
Antibody
113.9K papers, 4.1M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
202381
2022169
202181
2020116
2019106