scispace - formally typeset
Search or ask a question
Topic

Bacillus circulans

About: Bacillus circulans is a research topic. Over the lifetime, 1172 publications have been published within this topic receiving 28528 citations.


Papers
More filters
Journal ArticleDOI
Takehiko Watanabe1, K Kobori1, K Miyashita1, T Fujii1, H Sakai1, M Uchida1, H. Tanaka1 
TL;DR: Kinetic parameters for 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined and results indicate a lysozyme-type catalytic mechanism of the chitinase.
Abstract: Prokaryotic chitinases, class III plant chitinases, yeast chitinases, and endo-beta-N-acetylglucosaminidases share weak amino acid sequence similarities at the certain region of each enzyme. These regions have been assumed to be important for catalytic activities of the enzymes. To verify this assumption, three amino acid residues (Ser-160, Asp-200, Glu-204) in chitinase A1 of Bacillus circulans WL-12 were chosen, based on the amino acid sequence alignment of the regions sharing sequence similarity, and were replaced by site-directed mutagenesis. Kinetic parameters for 4-methylumbelliferyl-N,N',N"-triacetylchitotriose hydrolysis were determined with wild-type and seven mutant chitinases. Chitinases with Glu-204-->Gln mutation and Glu-204-->Asp mutation were essentially inactive and kcat values of these chitinases were approximately 1/5,000 and 1/17,000 of that of wild-type chitinase, respectively. Asp-200-->Asn mutation decreased the kcat value to approximately 1/350 of that of the wild-type enzyme, while the Km value decreased only slightly. On the other hand, neither the kcat value nor the Km value was affected by Asp-200-->Glu mutation. Thus, it appeared that Glu-204 and Asp-200 are directly involved in the catalytic events of chitinase A1. The role of the carboxyl group of Asp-200 can be fully substituted by that of Glu residue. The Ser-160-->Ala mutant retained 10% activity of the wild-type chitinase indicating that the hydroxyl group of Ser-160 is not absolutely required for the catalytic activity. These results indicate a lysozyme-type catalytic mechanism of the chitinase.

357 citations

Journal ArticleDOI
TL;DR: The objective is to isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials.
Abstract: Aims: To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. Methods and Results: The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high-performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27·3 min showed the maximum surface tension-reducing property and reduced the surface tension of water from 72 mNm−1 to 28 mNm−1. Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram-positive and Gram-negative pathogenic and semi-pathogenic micro-organisms including a few multidrug-resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram-negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 μg ml−1. The biosurfactant was also active against methicillin-resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine-B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin and lichenysin, proving this biosurfactant fraction to be a lipopeptide. The biosurfactant did not show any haemolytic activity when tested on blood agar plates, unlike the lipopeptide biosurfactant surfactin produced by Bacillus subtilis. Conclusions: The biosurfactant produced by marine B. circulans had a potent antimicrobial activity against Gram-positive and Gram-negative pathogenic and semi-pathogenic microbial strains including MDR strains. Only one of the HPLC fractions of the crude biosurfactants was responsible for its antimicrobial action. The antimicrobial lipopeptide biosurfactant fraction was also found to be nonhaemolytic in nature. Significance and impact of the study: This work presents a nonhaemolytic lipopeptide biosurfactant produced by a marine micro-organism possessing a pronounced antimicrobial action against a wide range of bacteria. There is a high demand for new antimicrobial agents because of the increased resistance shown by pathogenic micro-organisms against the existing antimicrobial drugs. This study provides an insight into the search of new bioactive molecules from marine micro-organisms.

319 citations

Journal ArticleDOI
TL;DR: The mature form of chitinase A1 from Bacillus circulans WL-12 comprises a C-terminal domain, two type III modules (domains), and a large N-Terminal domain which contains the catalytic site of the enzyme.
Abstract: The mature form of chitinase A1 from Bacillus circulans WL-12 comprises a C-terminal domain, two type III modules (domains), and a large N-terminal domain which contains the catalytic site of the enzyme. In order to better define the roles of these chitinase domains in chitin degradation, modified chiA genes encoding various deletions of chitinase A1 were constructed. The modified chiA genes were expressed in Escherichia coli, and the gene products were analyzed after purification by high-performance liquid chromatography. Intact chitinase A1 specifically bound to chitin, while it did not show significant binding activity towards partially acetylated chitosan and other insoluble polysaccharides. Chitinases lacking the C-terminal domain lost much of this binding activity to chitin as well as colloidal chitin-hydrolyzing activity. Deletion of the type III domains, on the other hand, did not affect chitin-binding activity but did result in significantly decreased colloidal chitin-hydrolyzing activity. Hydrolysis of low-molecular-weight substrates, soluble high-molecular-weight substrates, and insoluble high-molecular-weight substrates to which chitinase A1 does not bind were not significantly affected by these deletions. Thus, it was concluded that the C-terminal domain is a chitin-binding domain required for the specific binding to chitin and that this chitin-binding activity is important for efficient hydrolysis of the sufficiently acetylated chitin. Type III modules are not directly involved in the chitin binding but play an important functional role in the hydrolysis of chitin by the enzyme bound to chitin. Images

286 citations

Journal ArticleDOI
TL;DR: All of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH and the number of cellulolytic bacteria increases with each instar.
Abstract: Bombyx mori L. (Lepidoptera: Bombycidae) have been domesticated and widely used for silk production. It feeds on mulberry leaves. Mulberry leaves are mainly composed of pectin, xylan, cellulose and starch. Some of the digestive enzymes that degrade these carbohydrates might be produced by gut bacteria. Eleven isolates were obtained from the digestive tract of B. mori, including the Gram positive Bacillus circulans and Gram negative Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Serratia liquefaciens, Enterobacter sp., Pseudomonas fluorescens, P. aeruginosa, Aeromonas sp., and Erwinia sp.. Three of these isolates, P. vulgaris, K. pneumoniae, C. freundii, were cellulolytic and xylanolytic, P. fluorescens and Erwinia sp., were pectinolytic and K. pneumoniae degraded starch. Aeromonas sp. was able to utilize the CMcellulose and xylan. S. liquefaciens was able to utilize three polysaccharides including CMcellulose, xylan and pectin. B. circulans was able to utilize all four polysaccharides with different efficacy. The gut of B. mori has an alkaline pH and all of the isolated bacterial strains were found to grow and degrade polysaccharides at alkaline pH. The number of cellulolytic bacteria increases with each instar.

285 citations

Journal ArticleDOI
TL;DR: It is proposed that Glu 78 is the nucleophile and that GLU 172 is the acid‐base catalyst in the reaction, on the basis of the work investigated.
Abstract: Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.

285 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
81% related
Yeast
31.7K papers, 868.9K citations
80% related
Enzyme
32.8K papers, 1.1M citations
79% related
Plasmid
44.3K papers, 1.9M citations
79% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202231
202117
202020
201916
201822