scispace - formally typeset
Search or ask a question

Showing papers on "Bacillus thuringiensis published in 2007"


Journal ArticleDOI
TL;DR: It is demonstrated that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm Diabrotica virgifera virgifiera LeConte, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA.
Abstract: Commercial biotechnology solutions for controlling lepidopteran and coleopteran insect pests on crops depend on the expression of Bacillus thuringiensis insecticidal proteins1,2, most of which permeabilize the membranes of gut epithelial cells of susceptible insects3 However, insect control strategies involving a different mode of action would be valuable for managing the emergence of insect resistance Toward this end, we demonstrate that ingestion of double-stranded (ds)RNAs supplied in an artificial diet triggers RNA interference in several coleopteran species, most notably the western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte This may result in larval stunting and mortality Transgenic corn plants engineered to express WCR dsRNAs show a significant reduction in WCR feeding damage in a growth chamber assay, suggesting that the RNAi pathway can be exploited to control insect pests via in planta expression of a dsRNA

1,545 citations


Journal ArticleDOI
15 Mar 2007-Toxicon
TL;DR: Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor, and compares them to the mode of action of other bacterial PFT.

1,171 citations


Journal ArticleDOI
TL;DR: This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death.
Abstract: Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death.

650 citations


Journal Article
TL;DR: Bacillus thuringiensis was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control and the development of Bt transgenic plants.
Abstract: Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in, 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

350 citations


Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is suggested that cadherin promotes Bt toxicity by facilitating toxin oligomerization and it is demonstrated that the modified Bt toxins may be useful against pests resistant to standard BT toxins.
Abstract: The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin's role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one alpha-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.

262 citations


Journal ArticleDOI
15 Mar 2007-Toxicon
TL;DR: The likely biological reasons for the massive functional redundancy in Photorhabdus insecticidal toxins are discussed and their potential in agriculture as alternatives to Bt is discussed.

241 citations


Journal ArticleDOI
TL;DR: It is speculated that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.
Abstract: Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis) have a marked impact on human activity. Bacillus cereus and B. anthracis are important p...

235 citations


Journal ArticleDOI
TL;DR: It can be concluded that developing new cotton varieties with more powerful resistance, applying certain plant growth regulators, enhancing intra-plant defensive capability, and maintenance of general health of the transgenic crop are important in realizing the full transgenic potential in Bt cotton.
Abstract: Transgenic cotton expressing Bt (Bacillus thuringiensis) toxins is currently cultivated on a large commercial scale in many countries, but observations have shown that it behaves variably in toxin efficacy against target insects under field conditions. Understanding of the temporal and spatial variation in efficacy and the resulting mechanisms is essential for cotton protection and production. In this review, we summarize current knowledge on variability in Bt cotton efficacy, in particular on the induced variability by environmental stresses. We also discuss the resulting mechanisms and the countermeasures for the inconsistence in efficacy in Bt cotton. It is indicated that insecticidal protein content in Bt cotton is variable with plant age, plant structure or under certain environmental stresses. Variability in Bt cotton efficacy against target insect pests is mainly attributed to the changes in Bt protein content, but physiological changes associated with the production of secondary compounds in plant tissues may also play an important role. Reduction of Bt protein content in late-season cotton could be due to the overexpression of Bt gene at earlier stages, which leads to gene regulation at post-transcription levels and consequently results in gene silencing at a later stage. Methylation of the promotor may be also involved in the declined expression of endotoxin proteins. As a part of total protein, the insecticidal protein in plant tissues changes its level through inhibited synthesis, degradation or translocation to developing plant parts, particularly under environmental stresses, thus being closely correlated to N metabolism. It can be concluded that developing new cotton varieties with more powerful resistance, applying certain plant growth regulators, enhancing intra-plant defensive capability, and maintenance of general health of the transgenic crop are important in realizing the full transgenic potential in Bt cotton.

147 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Langmuir model to investigate the adsorption process of Bacillus thuringiensis var. thuringiansis using Scatchard analysis.

145 citations


Journal ArticleDOI
TL;DR: Vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control and experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins.
Abstract: Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.

132 citations


Journal ArticleDOI
01 Jan 2007-Peptides
TL;DR: Recently, it was proposed that Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a membrane-bound receptor for Cry toxin.

Journal ArticleDOI
TL;DR: A novel assay was developed for the detection of Bacillus thuringiensis (BT) spores based on the fluorescence observed after binding an aptamer-quantum dot conjugate to BT spores.
Abstract: A novel assay was developed for the detection of Bacillus thuringiensis (BT) spores. The assay is based on the fluorescence observed after binding an aptamer-quantum dot conjugate to BT spores. The in vitro selection and amplification technique called SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used in order to identify the DNA aptamer sequence specific for BT. The 60 base aptamer was then coupled to fluorescent zinc sulfide-capped, cadmium selenide quantum dots (QD). The assay is semi-quantitative, specific and can detect BT at concentrations of about 1,000 colony forming units/ml.

Journal ArticleDOI
TL;DR: The toxicity of a collection of 1400 isolates of Bacillus thuringiensis was assessed against the Lepidoptera Spodoptera frugiperda, Anticarsia gemmantalis and Plutella xylostella with three isolates demonstrating significantly greater potency than the standard strain.

Journal ArticleDOI
TL;DR: Homozygotes were highly resistant to Cry2Ab toxin, so much so, that the authors were unable to induce significant mortality at the maximum concentration of toxin available, and SP15, a colony consisting of homozygous resistant individuals, was susceptible to Cry1Ac and to the Bt product DiPel.
Abstract: Transgenic cotton, Gossypium hirsutum L., expressing the crylAc and cry2Ab genes from Bacillus thuringiensis (Bt) Berliner variety kurstaki in a pyramid (Bollgard II) was widely planted for the first time in Australia during the 2004-2005 growing season. Before the first commercial Bollgard II crops, limited amounts of cotton expressing only the crylAc gene (Ingard) was grown for seven seasons. No field failures due to resistance to CrylAc toxin were observed during that period and a monitoring program indicated that the frequency of genes conferring high level resistance to the CrylAc toxin were rare in the major pest of cotton, Helicoverpa armigera (Htibner) (Lepidoptera: Noctuidae). Before the deployment of Bollgard II, an allele conferring resistance to Cry2Ab toxin was detected in field-collected H. armigera. We established a colony (designated SP15) consisting of homozygous resistant individuals and examined their characteristics through comparison with individuals from a Bt-susceptible laboratory colony (GR). Through specific crosses and bioassays, we established that the resistance present in SP15 was due to a single autosomal gene. The resistance was recessive. Homozygotes were highly resistant to Cry2Ab toxin, so much so, that we were unable to induce significant mortality at the maximum concentration of toxin available. Homozygotes also were unaffected when fed leaves of a cotton variety expressing the cry2Ab gene. Although cross-resistant to Cry2Aa toxin, SP15 was susceptible to CrylAc and to the Bt product DiPel.

Journal ArticleDOI
TL;DR: It is indicated, for the first time, that a Bt Cry protein can confer plant resistance to an endoparasitic nematode, and that Cry proteins have the potential to control plant-parasite nematodes in transgenic plants.
Abstract: Our laboratory has demonstrated previously that Bacillus thuringiensis (Bt) crystal (Cry) proteins present in the Cry5 and Cry6 subclades intoxicate free-living nematodes. In this study, we tested whether the expression of nematicidal Cry6A in transgenic plants provided protection against plant-parasitic nematodes. As bacterial codon usage is incompatible with expression in plants, two different codon-modified cry6A genes were synthesized for expression in plants. One was designed by maintaining codon diversity whilst removing codons not common in plants, and the other was designed by selecting the optimal codon for each amino acid based on the Arabidopsis genome. Both versions of the cry6A gene, driven by the constitutive cauliflower mosaic virus 35S promoter, were introduced into tomato roots via Agrobacterium rhizogenes. Although both were found to express Cry6A protein, the codon diversity gene generated superior expression. These Cry6A-expressing roots were then challenged with root-knot nematode, Meloidogyne incognita. Three different infection parameters were compared between Cry6A-expressing roots and control roots transformed with empty vector or green fluorescent protein (GFP). These data demonstrated that M. incognita was able to ingest the 54-kDa Cry6A, and that Cry6A intoxicated the parasitic nematode, as indicated by a decrease in progeny production of up to fourfold. These results indicate, for the first time, that a Bt Cry protein can confer plant resistance to an endoparasitic nematode, and that Cry proteins have the potential to control plant-parasitic nematodes in transgenic plants.

Journal ArticleDOI
TL;DR: The first functional demonstration of insect aminopeptidase-N of Helicoverpa armigera being a receptor of Cry1Ac protein of Bacillus thuringiensis was reported in this paper.

Journal ArticleDOI
TL;DR: It is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1ac to the Cry1 Ab/Cry1Ac binding site in the midgut.
Abstract: The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.

Journal ArticleDOI
TL;DR: It is reported that a peptide containing this region expressed in Escherichia coli functions as a synergist of Cry1A toxicity against lepidopteran larvae and has important implications related to the use of this peptide to enhance insecticidal activity of Bt toxin-based biopesticides and transgenic Bt crops.
Abstract: The insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) are broadly used to control insect pests with agricultural importance. The cadherin Bt-R1 is a binding protein for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R1 region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. Here, we report that a peptide containing this region expressed in Escherichia coli functions as a synergist of Cry1A toxicity against lepidopteran larvae. Far-UV circular dichroism and 1H-NMR spectroscopy confirmed that our purified CR12-MPED peptide mainly consisted of β-strands and random coils with unfolded structure. CR12-MPED peptide bound brush border membrane vesicles with high affinity (Kd = 32 nM) and insect midgut microvilli but did not alter Cry1Ab or Cry1Ac binding localization in the midgut. By BIAcore analysis we demonstrate that Cry1Ab binds CR12-MPED at high (9 nM)- and low (1 μM)-affinity sites. CR12-MPED-mediated Cry1A toxicity enhancement was significantly reduced when the high-affinity Cry1A-binding epitope (1416GVLTLNIQ1423) within the peptide was altered. Because the mixtures of low Bt toxin dose and CR12-MPED peptide effectively control target insect pests, our discovery has important implications related to the use of this peptide to enhance insecticidal activity of Bt toxin-based biopesticides and transgenic Bt crops.

Journal ArticleDOI
TL;DR: Data indicate the pre-pore oligomer and the toxin pore formation play a major role in the intoxication process of Cry1Ab toxin in insect larvae, indicating biological weapons produced by a variety of living organisms, particularly bacteria but also by insects, reptiles, and invertebrates.

Journal ArticleDOI
TL;DR: The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.

Journal ArticleDOI
Yajun Yang1, Haiyan Chen1, Yidong Wu1, Yihua Yang1, Shuwen Wu1 
TL;DR: This study demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton, and the cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.
Abstract: The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r(1)) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r(2) and r(3)) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r(2) and r(3) alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.

Journal ArticleDOI
TL;DR: It is suggested that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of allele conferring Resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin.
Abstract: Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) Cry1Ac and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab ...

Journal ArticleDOI
TL;DR: It is reported that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11 a pre‐pore oligomeric structure that is capable of forming pores in membrane vesicles, and the molecular mechanism by which Cyt 1Aa synergizes or suppresses resistance to Cry 11Aa is demonstrated.
Abstract: Bacillus thuringiensis ssp. israelensis (Bti) has been used worldwide for the control of dipteran insect pests. This bacterium produces several Cry and Cyt toxins that individually show activity against mosquitoes but together show synergistic effect. Previous work demonstrated that Cyt1Aa synergizes the toxic activity of Cry11Aa by functioning as a membrane-bound receptor. In the case of Cry toxins active against lepidopteran insects, receptor interaction triggers the formation of a pre-pore oligomer that is responsible for pore formation and toxicity. In this work we report that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11Aa pre-pore oligomeric structure that is capable of forming pores in membrane vesicles. Cry11Aa and Cyt1A point mutants affected in binding and in synergism had a correlative effect on the formation of Cry11Aa pre-pore oligomer and on pore-formation activity of Cry11Aa. These data further support that Cyt1Aa interacts with Cry11Aa and demonstrate the molecular mechanism by which Cyt1Aa synergizes or suppresses resistance to Cry11Aa, by providing a binding site for Cry11Aa that will result in an efficient formation of Cry11Aa pre-pore that inserts into membranes and forms ionic pores.

Journal ArticleDOI
TL;DR: Analysis of DNA from Bt corn and Bt were persistent in aquatic environments and were detected in rivers draining farming areas, suggesting that there were multiple sources of this gene and/or that it undergoes transport by the water column.

Journal ArticleDOI
TL;DR: The results suggest that an understanding of the interaction between host refuge plant and fitness costs associated with Cry1A resistance in H. armigera could be advantageous for maximizing the benefits of refuges used in resistance management of bioinsecticides, whether microbial or transgenic plants.

Journal ArticleDOI
TL;DR: Soil microbial community structure, as determined by phospholipid fatty acid (PLFA) analysis, was strongly affected by plant growth stage but not by the Bt trait, while variations in plant growth parameters, Bt protein concentration in shoots, roots and soil, soil nematode abundance and soil microbialCommunity structure were determined.
Abstract: A glasshouse experiment was undertaken to provide baseline data on the variation between conventional maize (Zea mays L.) varieties and genetically modified maize plants expressing the insecticidal Bacillus thuringiensis protein (Bt, Cry1Ab). The objective was to determine whether the variation in soil parameters under a range of conventional maize cultivars exceeded the differences between Bt and non-Bt maize cultivars. Variations in plant growth parameters (shoot and root biomass, percentage carbon, percentage nitrogen), Bt protein concentration in shoots, roots and soil, soil nematode abundance and soil microbial community structure were determined. Eight paired varieties (i.e. varieties genetically modified to express Bt protein and their near-isogenic control varieties) were investigated, together with a Bt variety for which no near-isogenic control was available (NX3622, a combined transformant expressing both Bt and herbicide tolerance) and a conventional barley (Hordeum vulgare L.) variety which was included as a positive control. The only plant parameter which showed a difference between Bt varieties and near-isogenic counterparts was the shoot carbon to nitrogen ratio; this was observed for only two of the eight varieties, and so was not attributable to the Bt trait. There were no detectable differences in the concentration of Bt protein in plant or soil with any of the Bt-expressing varieties. There were significant differences in the abundance of soil nematodes, but this was not related to the Bt trait. Differences in previously published soil nematode studies under Bt maize were smaller than these varietal effects. Soil microbial community structure, as determined by phospholipid fatty acid (PLFA) analysis, was strongly affected by plant growth stage but not by the Bt trait. The experimental addition of purified Cry1Ab protein to soil confirmed that, at ecologically relevant concentrations, there were no measurable effects on microbial community structure.

Journal ArticleDOI
TL;DR: First report of resistance alleles to commercially available Cry1Ab Bt maize in a Louisiana population of sugarcane borer, Diatraea saccharalis, suggests that Bt resistance is probably determined by a nearly completely recessive allele at a single locus.
Abstract: Transgenic maize, Zea mays L., expressing the Bacillus thuringiensis (Bt) CrylAb toxin has been planted to extensive areas across the United States and several other countries, but no resistance has been documented in field populations oflepidopteran target pests. This article describes the first report of resistance alleles to commercially available Cry1Ab Bt maize in a Louisiana population of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Two hundred thirteen two-parent isolines of D. saccharalis were screened for Cry1Ab resistance on Bt maize leaf tissue using an F2 screening technique. Larvae representing three isolines survived >15 d on Bt tissue in the F2 generation. The second generation backcross progeny (B1F2) derived from isoline 52 completed larval development on Bt maize in the greenhouse. Segregation and resistance frequency analysis associated with isoline 52 suggested that Bt resistance is probably determined by a nearly completely recessive allele at a single locus. With this assumption, the estimated resistance allele frequency in this population is 0.0023, within a 95% confidence interval of 0.0003-0.0064.

Journal ArticleDOI
TL;DR: Differences in serine proteinases are a critical component of Bt toxin mode of action, these differences may contribute to decreased toxicity in the Bt-resistant strains.
Abstract: Insects with altered proteinases can avoid intoxication by Bacillus thuringiensis (Bt) toxins. Therefore, proteinase activities from gut extracts of Bt-susceptible (YDK) and -resistant (YHD2-B, CXC and KCBhyb) Heliothis virescens strains were compared. The overall pH of gut extracts from YDK and CXC were statistically similar (9.56 and 9.62, respectively), while the pH of extracts from KCBhyb and YHD2-B were significantly more alkaline (9.81 and 10.0, respectively). Gut extracts from YHD2-B and CXC larvae processed Cry1Ac and Cry2Aa protoxin slower than extracts from YDK larvae, suggesting that differences in proteolysis contribute to resistance in these strains. Casein zymogram analysis of gut extracts revealed both qualitative and quantitative differences in caseinolytic activities among all strains, but the overall caseinolytic activity of YHD2-B gut extract was lower. Kinetic microplate assays with a trypsin substrate (l-BApNA) demonstrated that proteinases in YDK gut extract had increased alkaline pH optima compared to resistant strains YHD2-B, CXC and KCBhyb. Gut extracts from YHD2-B had reduced trypsin-like activity, and activity blots indicated that YHD2-B had lost a trypsin-like proteinase activity. In assays with a chymotrypsin substrate (SAAPFpNA), enzymes from all Bt-resistant strains had increased pH optima, especially those from KCBhyb. Activity blots indicated that CXC had lost a chymotrypsin-like proteinase activity. Because serine proteinases are a critical component of Bt toxin mode of action, these differences may contribute to decreased toxicity in the Bt-resistant strains.

Journal ArticleDOI
TL;DR: Genetic engineering techniques have been used to significantly improve mosquito larvicides based on the bacteria Bacillus thuringiensis (Bt) subsp.
Abstract: Genetic engineering techniques have been used to significantly improve mosquito larvicides based on the bacteria Bacillus thuringiensis (Bt) subsp. israelensis (Bti) and Bacillus sphaericus (Bs). These new larvicides hold excellent promise for providing better and more cost-effective control of nuisance mosquitoes and vectors of important diseases, including the anopheline vectors of malaria and culicine vectors responsible for filariasis and viral encephalitides. The toxicity of Bti and Bs is due primarily to endotoxin proteins produced during sporulation. After ingestion by larvae, these are activated and destroy the larval stomach, quickly resulting in death. By cloning the genes encoding various endotoxins from Bt and Bs species, and engineering these for high levels of synthesis, we have been able to generate recombinant bacterial strains based on Bti that are more than 10 times as effective as the conventional strains of Bti or Bs that serve as the active ingredients of commercial bacterial larvicides currently used for mosquito control. The best of these recombinants contain all major Bti endotoxins, specifically, Cry4A, Cry4B, Cry11A, and Cyt1A, plus the binary (Bin) endotoxin of Bs, the principal mosquitocidal protein responsible for the activity of this species. The presence of Cyt1A in these recombinants, which synergizes Cry toxicity and delays resistance to these proteins and Bs Bin, should enable long term use of these recombinants with little if any development of resistance. In the field, these new recombinants should be particularly effective larvicides against most important vectors and nuisance species of the genus Culex, the malaria vectors Anopheles gambiae and An. arabiensis, and species of Aedes and Ochlerotatus sensitive to Bs.

Journal ArticleDOI
TL;DR: The results reported here support the hypothesis that BtR is a receptor for Cry1Ac in PBW, and found that both the protoxin and activated toxin forms of Cry1 Ac bound to recombinant BTR fragments, suggesting thatCry1Ac activation may occur either before or after receptor binding.