scispace - formally typeset
Search or ask a question

Showing papers on "Bacillus thuringiensis published in 2013"


Journal ArticleDOI
TL;DR: Field outcomes support theoretical predictions that factors delaying resistance include recessive inheritance of resistance, low initial frequency of resistance alleles, abundant refuges of non-Bt host plants and two-toxin Bt crops deployed separately from one-t toxin BT crops.
Abstract: Evolution of resistance in pests can reduce the effectiveness of insecticidal proteins from Bacillus thuringiensis (Bt) produced by transgenic crops We analyzed results of 77 studies from five continents reporting field monitoring data for resistance to Bt crops, empirical evaluation of factors affecting resistance or both Although most pest populations remained susceptible, reduced efficacy of Bt crops caused by field-evolved resistance has been reported now for some populations of 5 of 13 major pest species examined, compared with resistant populations of only one pest species in 2005 Field outcomes support theoretical predictions that factors delaying resistance include recessive inheritance of resistance, low initial frequency of resistance alleles, abundant refuges of non-Bt host plants and two-toxin Bt crops deployed separately from one-toxin Bt crops The results imply that proactive evaluation of the inheritance and initial frequency of resistance are useful for predicting the risk of resistance and improving strategies to sustain the effectiveness of Bt crops

838 citations


Journal ArticleDOI
TL;DR: Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity.
Abstract: Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential interactions with several insect midgut proteins that facilitate the formation of an oligomeric structure and induce its insertion into the membrane, forming a pore that kills midgut cells. We review recent progress in our understanding of the mechanism of action of these Cry toxins and focus our attention on the different mechanisms of resistance that insects have evolved to counter their action, such as mutations in cadherin, APN and ABC transporter genes. Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, including those affected in the ABC transporter and the role of dominant negative mutants as antitoxins, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity. Knowledge of the action of 3d-Cry toxin and the resistance mechanisms to these toxins will set the basis for a rational design of novel toxins to overcome insect resistance, extending the useful lifespan of Cry toxins in insect control programs.

581 citations


Journal ArticleDOI
TL;DR: It is believed that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate‐limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improved of mutagenesis strategies and selection procedures.
Abstract: Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.

221 citations


Journal ArticleDOI
TL;DR: Analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins, and incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy.
Abstract: To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the “pyramid” strategy uses plants that produce two or more toxins that kill the same pest. In the United States, this strategy has been adopted widely, with two-toxin Bt cotton replacing one-toxin Bt cotton. Although two-toxin plants are likely to be more durable than one-toxin plants, the extent of this advantage depends on several conditions. One key assumption favoring success of two-toxin plants is that they kill insects selected for resistance to one toxin, which is called “redundant killing.” Here we tested this assumption for a major pest, Helicoverpa zea, on transgenic cotton producing Bt toxins Cry1Ac and Cry2Ab. Selection with Cry1Ac increased survival on two-toxin cotton, which contradicts the assumption. The concentration of Cry1Ac and Cry2Ab declined during the growing season, which would tend to exacerbate this problem. Furthermore, analysis of results from 21 selection experiments with eight species of lepidopteran pests indicates that some cross-resistance typically occurs between Cry1A and Cry2A toxins. Incorporation of empirical data into simulation models shows that the observed deviations from ideal conditions could greatly reduce the benefits of the pyramid strategy for pests like H. zea, which have inherently low susceptibility to Bt toxins and have been exposed extensively to one of the toxins in the pyramid before two-toxin plants are adopted. For such pests, the pyramid strategy could be improved by incorporating empirical data on deviations from ideal assumptions about redundant killing and cross-resistance.

154 citations


Journal ArticleDOI
TL;DR: This study demonstrates, for the first time, Cry toxin receptor functionality for ABCC2, and highlights the crucial role of this protein and cadherin in the mechanism of action of Cry toxin.
Abstract: Bacillus thuringiensis is the most widely used biopesticide, and its Cry toxin genes are essential transgenes for the generation of insect-resistant transgenic crops. Recent reports have suggested that ATP-binding cassette transporter subfamily C2 (ABCC2) proteins are implicated in Cry intoxication, and that a single amino acid insertion results in high levels of resistance to Cry1 toxins. However, there is currently no available direct evidence of functional interactions between ABCC2 and Cry toxins. To address this important knowledge gap, we investigated the role of Bombyx mori ABCC2 (BmABCC2) or its mutant from a Cry1Ab-resistant B. mori strain on Cry1A toxin action. When we expressed BmABCC2 ectopically on Sf9 cells, it served as a functional receptor, and the single amino acid insertion found in BmABCC2 from Cry1Ab-resistant larvae resulted in lack of susceptibility to Cry1Ab and Cry1Ac. Using the same expression system, we found that Bo. mori cadherin-like receptor (BtR175) conferred susceptibility to Cry1A toxins, albeit to a lower degree than BmABCC2. Coexpression of BtR175 and BmABCC2 resulted in the highest cell susceptibility to Cry1A, Cry1F, and even the phylogenetically distant Cry8Ca toxin, when compared with expression of either receptor alone. The susceptibility observed in the coexpressing cells and that in Bo. mori larvae are likely to be correlated, suggesting that BtR175 and BmABCC2 are important factors determining larval susceptibility. Our study demonstrates, for the first time, Cry toxin receptor functionality for ABCC2, and highlights the crucial role of this protein and cadherin in the mechanism of action of Cry toxin.

136 citations


Journal ArticleDOI
TL;DR: The results showed that the two screened antagonistic bacteria, and some of their produced volatiles and artificial mixtures could be promising control methods for anthracnose in harvested mango fruit.

131 citations


Journal ArticleDOI
01 Mar 2013-Peptides
TL;DR: Important aspects of Cyt toxins produced by Bacillus thuringiensis are summarized, including current knowledge of their mechanism of action against mosquitoes, and a primary sequence and structural comparison with related proteins found in other pathogenic bacteria and fungus that may indicate thatCyt toxins have been selected by several pathogenic organisms to exert their virulence phenotypes.

89 citations


Journal ArticleDOI
TL;DR: Current evidence suggests that cross-activity of B. thuringiensis pesticidal proteins needs to be taken into consideration when designing and approving their use in pest control applications.

88 citations


Journal ArticleDOI
TL;DR: Insertion of a 12-aa pea aphid gut-binding peptide by adding to or replacing amino acids in one of three loops of the Bt cytolytic toxin, Cyt2Aa, resulted in enhanced binding and toxicity against both the pea Aphid and the green peach aphid.
Abstract: Although transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been used successfully for management of lepidopteran and coleopteran pest species, the sap-sucking insects (Hemiptera) are not particularly susceptible to Bt toxins. To overcome this limitation, we demonstrate that addition of a short peptide sequence selected for binding to the gut of the targeted pest species serves to increase toxicity against said pest. Insertion of a 12-aa pea aphid gut-binding peptide by adding to or replacing amino acids in one of three loops of the Bt cytolytic toxin, Cyt2Aa, resulted in enhanced binding and toxicity against both the pea aphid, Acyrthosiphon pisum, and the green peach aphid, Myzus persicae. This strategy may allow for transgenic plant-mediated suppression of other hemipteran pests, which include some of the most important pests of global agriculture.

88 citations


Journal ArticleDOI
30 May 2013-PLOS ONE
TL;DR: It is found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores, and differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success, and the availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections.
Abstract: Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.

80 citations


Journal ArticleDOI
TL;DR: This study systematically reveals the metabolic regulation mechanisms involved in the supply of amino acids, carbon substances, and energy for B. thuringiensis spore and parasporal crystal formation at both the transcriptional and translational levels.

Journal ArticleDOI
TL;DR: The possible cross-resistance between single-gene and pyramided Bt corn products suggest that careful selection of Bt genes is essential in use of gene pyramiding strategy for resistance management.
Abstract: Larval survival of Cry1F-susceptible (FL), -resistant (PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of the fall armyworm, Spodoptera frugiperda (J. E. Smith) to purified Cry1F protein and corn leaf tissue of 7 Bacillus thuringiensis (Bt) corn hybrids and 5 non-Bt corn hybrids was evaluated in the laboratory. The 7 Bt corn hybrids represent 5 Bt corn traits: Herculex®I, which expresses a single Bt protein (Cry1F), and Genuity® VT Double Pro™, VT Triple Pro™, SmartStax™, and Agrisure® Viptera® 3111, which contain ≥ 2 pyramided Bt genes. The original FL and PR populations were collected from corn fields in 2011 in Florida and Puerto Rico, respectively. Diet-incorporation bioassays showed that FL was susceptible to Cry1F protein with a LC50 value of 0.13–0.23 µg/g, while PR was highly resistant to Cry1F protein (> 137-fold). FL was also susceptible to all 7 Bt corn hybrids with a 7-day mortality of > 95%, while PR and a backcrossed and reselected population, Cry1F-RR, were highly resistant to Cry1F corn leaf tissue. The resistance was recessive or incompletely recessive. None of the 5 populations of S. frugiperda could survive on Viptera™ 3111, suggesting this Bt corn trait can completely overcome the resistance and thus should provide a means of managing Cry1F resistance in S. frugiperda. However, Cry1F-RR exhibited a significant cross-resistance to the leaf tissue of the other 3 pyramided Bt corn traits. The possible cross-resistance between single-gene and pyramided Bt corn products suggest that careful selection of Bt genes is essential in use of gene pyramiding strategy for resistance management. View this article in BioOne

Journal ArticleDOI
TL;DR: The results suggest that using these genes to develop pyramided plants may not prove effective in preventing the development of resistance in S. eridiana.

Journal ArticleDOI
TL;DR: This chapter begins with a general overview of the basic biology of B. thuringiensis and shows how studies of its molecular genetics combined with recombinant DNA techniques have been used to generate highly improved bacterial larvicides for control of nuisance and vector mosquitoes.
Abstract: The insecticidal bacterium, Bacillus thuringiensis, consists of a wide variety of subspecies, most of which are insecticidal for either lepidopteran, coleopteran, or dipteran insect larvae. Subspecies such as B. thuringiensis subsp. kurstaki have been used with remarkable safety for more than forty years to control lepidopteran pests in agriculture and forestry, and over the past thirty years, B. thruingeinsis subsp. israelensis, has proven to be a safe and effective larvicide for controlling mosquito and black fly larvae. Studies of the basic biology of B. thuringiensis have shown that it produces a variety of insecticidal proteins produced during vegetative growth and sporulation that determines its activity for insect species belonging to different orders, with the most important of these being the Cry proteins active against lepidopteran and coleopteran pests, and a combination of Cry and Cyt proteins for mosquitoes and blackflies. After intoxication by these proteins, spores typically germinate and invade larvae, contributing to insect mortality. Whereas strains of many wild type isolates have been commercialized and are now used worldwide, the use of recombinant DNA techniques, i.e., genetic engineering, has been used over the past decade to recombine the proteins of different B. thuringiensis strains with those of B. sphaericus to generate recombinant larvicides as much as ten-fold more toxic than the parental strains. In this chapter, we begin with a general overview of the basic biology of B. thuringiensis and B. sphaericus, then show how studies of its molecular genetics combined with recombinant DNA techniques have been used to generate highly improved bacterial larvicides for control of nuisance and vector mosquitoes.

Journal ArticleDOI
TL;DR: The data show a lack of cross-resistance between these two compounds; thus, Bti can be used in an integrated control program to fight Ae.
Abstract: Background Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populations to Bti, taking into account their background in terms of larvicide exposure, status of temephos resistance and the level of activity of detoxifying enzymes involved in metabolic resistance to insecticides.

Journal ArticleDOI
TL;DR: Results suggest that treatment of tomato roots with the CF of B. thuringiensis systemically suppresses bacterial wilt through systemic activation of the plant defense system.
Abstract: Bacillus thuringiensis is a naturally abundant Gram-positive bacterium and a well-known, effective bio-insecticide. Recently, B. thuringiensis has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. In this study, the bacterial wilt disease-suppressing activity of B. thuringiensis was examined in tomato plants. Treatment of tomato roots with B. thuringiensis culture followed by challenge inoculation with Ralstonia solanacearum suppressed the development of wilt symptoms to less than one third of the control. This disease suppression in tomato plants was reproduced by pretreating their roots with a cell-free filtrate (CF) that had been fractionated from B. thuringiensis culture by centrifugation and filtration. In tomato plants challenge-inoculated with R. solanacearum after pretreatment with CF, the growth of R. solanacearum in stem tissues clearly decreased, and expression of defense-related genes such as PR-1, acidic chitinase, and β-1,3-glucanase was induced in stem and leaf tissues. Furthermore, the stem tissues of tomato plants with their roots were pretreated with CF exhibited resistance against direct inoculation with R. solanacearum. Taken together, these results suggest that treatment of tomato roots with the CF of B. thuringiensis systemically suppresses bacterial wilt through systemic activation of the plant defense system.

Journal ArticleDOI
24 Dec 2013-Insects
TL;DR: This review gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species.
Abstract: Bacillus thuringiensis (Bt) has been used successfully as a biopesticide for more than 60 years. More recently, genes encoding their toxins have been used to transform plants and other organisms. Despite the large amount of research on this bacterium, its true ecology is still a matter of debate, with two major viewpoints dominating: while some understand Bt as an insect pathogen, others see it as a saprophytic bacteria from soil. In this context, Bt’s pathogenicity to other taxa and the possibility that insects may not be the primary targets of Bt are also ideas that further complicate this scenario. The existence of conflicting research results, the difficulty in developing broader ecological and genetics studies, and the great genetic plasticity of this species has cluttered a definitive concept. In this review, we gathered information on the aspects of Bt ecology that are often ignored, in the attempt to clarify the lifestyle, mechanisms of transmission and target host range of this bacterial species. As a result, we propose an integrated view to account for Bt ecology. Although Bt is indeed a pathogenic bacterium that possesses a broad arsenal for virulence and defense mechanisms, as well as a wide range of target hosts, this seems to be an adaptation to specific ecological changes acting on a versatile and cosmopolitan environmental bacterium. Bt pathogenicity and host-specificity was favored evolutionarily by increased populations of certain insect species (or other host animals), whose availability for colonization were mostly caused by anthropogenic activities. These have generated the conditions for ecological imbalances that favored dominance of specific populations of insects, arachnids, nematodes, etc., in certain areas, with narrower genetic backgrounds. These conditions provided the selective pressure for development of new hosts for pathogenic interactions, and so, host specificity of certain strains.

Journal ArticleDOI
TL;DR: ABSTRACT Aminopeptidase-N (APN1) and alkaline phosphatase (ALP) proteins located in the midgut epithelium of Manduca sexta have been implicated as receptors for Cry1Aa, Cry1Ab, and Cry1Ac insecticidal proteins produced by Bacillus thuringiensis subsp.
Abstract: Aminopeptidase-N (APN1) and alkaline phosphatase (ALP) proteins located in the midgut epithelium of Manduca sexta have been implicated as receptors for Cry1Aa, Cry1Ab, and Cry1Ac insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki. In this study, we analyzed the roles of ALP and APN1 in the toxicity of these three Cry1A proteins. Ligand blot analysis using brush border membrane vesicles of M. sexta showed that Cry1Aa and Cry1Ab bind preferentially to ALP during early instars while binding to APN was observed after the third instar of larval development. Cry1Ac binds to APN throughout all larval development, with no apparent binding to ALP. ALP was cloned from M. sexta midgut RNA and expressed in Escherichia coli. Surface plasmon resonance binding analysis showed that recombinant ALP binds to Cry1Ac with 16-fold lower affinity than to Cry1Aa or Cry1Ab. Downregulation of APN1 and ALP expression by RNA interference (RNAi) using specific double-stranded RNA correlated with a reduction of transcript and protein levels. Toxicity analysis of the three Cry1A proteins in ALP- or APN1-silenced larvae showed that Cry1Aa relies similarly on both receptor molecules for toxicity. In contrast, RNAi experiments showed that ALP is more important than APN for Cry1Ab toxicity, while Cry1Ac relied principally on APN1. These results indicated that ALP and APN1 have a differential role in the mode of action of Cry1A toxins, suggesting that B. thuringiensis subsp. kurstaki produces different Cry1A toxins that in conjunction target diverse midgut proteins to exert their insecticidal effect.

Journal ArticleDOI
02 Jul 2013-PLOS ONE
TL;DR: It is shown that resistance of B .
Abstract: Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the “high dose/refuge” strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the “high dose/refuge” strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseola fusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B. fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B. fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B. fusca to Bt corn must address non-recessive resistance.

DOI
17 Dec 2013
TL;DR: Rec recombinant bacteria show excellent promise for development and use in operational vector control programs, and it should ultimately be possible to design `smart' bacteria that will seek out and kill larvae of specific vector mosquitoes.
Abstract: Bacillus sphaericus Neide (Bs) and Bacillus thuringiensis serovar israelensisdeBarjac (Bti) provide effective alternatives to broad spectrum larvicides in many situations with little or no environmental impact. Taking into account environmental benefits including safety for humans and other non-target organisms, reduction of pesticide residues in the aquatic environment, increased activity of most other natural enemies and increased biodiversity in aquatic ecosystems, their advantages are numerous. In addition to recombinant bacteria used as larvicides, research is also underway to develop transgenic algae and cyanobacteria using larvicidal endotoxins of Bti and Bs. The advent of recombinant DNA technology is now having an enormous impact on agriculture and medicine and it is appropriate that the ability to manipulate and recombine genes with this technology be applied to improving larvicides for vector control. These new recombinant bacteria are as potent as many synthetic chemical insecticides yet are much less prone to resistance, as they typically contain a mixture of endotoxins with different modes of action. The existing recombinants also have what can be considered disadvantageous in that they do not show significantly improved activity againstaedine and anopheline mosquitoes in comparison to Bti. But it may be possible to overcome this limitation using some of the newly discovered mosquitocidal proteins such as the Mtx proteins and peptides such as the trypsin-modulating oostatic factor which could be easily engineered for high expression in recombinant bacteria. While other microbial technologies such as recombinant algae and other bacteria are being evaluated, it has yet to be shown that these are as efficaciousand environmentally friendly as Bti and Bs. By combining the genes from a variety of organisms, it should ultimately be possible to design `smart' bacteria that will seek out and kill larvae of specific vector mosquitoes. Thus, recombinant bacteria show excellent promise for development and use in operational vector control programs, hopefully within the next few years. Key words: Bacillus sphaericus, Bacillus thuringiensis serovar israelensis, bacterial toxins, Culex quinquefasciatus, Anopheles stephensi, Aedes aegypti, mode of action, resistance, management of resistance.

Journal ArticleDOI
TL;DR: It is proposed that lack of herbivore-induced secondary metabolites in Bt cotton represents a mechanism that benefits non-target herbivores and increases the understanding of how insect-resistant crops impact Herbivore communities and helps underpin the sustainable use of GE varieties.
Abstract: The rapid adoption of genetically engineered (GE) plants that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) has raised concerns about their potential impact on non-target organisms. This includes the possibility that non-target herbivores develop into pests. Although studies have now reported increased populations of non-target herbivores in Bt cotton, the underlying mechanisms are not fully understood. We propose that lack of herbivore-induced secondary metabolites in Bt cotton represents a mechanism that benefits non-target herbivores. We show that, because of effective suppression of Bt-sensitive lepidopteran herbivores, Bt cotton contains reduced levels of induced terpenoids. We also show that changes in the overall level of these defensive secondary metabolites are associated with improved performance of a Bt-insensitive herbivore, the cotton aphid, under glasshouse conditions. These effects, however, were not as clearly evident under field conditions as aphid populations were not correlated with the amount of terpenoids measured in the plants. Nevertheless, increased aphid numbers were visible in Bt cotton compared with non-Bt cotton on some sampling dates. Identification of this mechanism increases our understanding of how insect-resistant crops impact herbivore communities and helps underpin the sustainable use of GE varieties.

Journal ArticleDOI
TL;DR: Two resistant strains were isolated: one from each of the two field‐selected populations of cotton bollworm, Helicoverpa armigera, from northern China, with dominant resistance to a diagnostic concentration of Cry1Ac in diet and to Bt cotton leaves containingCry1Ac.
Abstract: Evolution of resistance by insect pests threatens the long-term benefits of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work has detected increases in the frequency of resistance to Bt toxin Cry1Ac in populations of cotton bollworm, Helicoverpa armigera, from northern China where Bt cotton producing Cry1Ac has been grown extensively for more than a decade. Confirming that trend, we report evidence from 2011 showing that the percentage of individuals resistant to a diagnostic concentration of Cry1Ac was significantly higher in two populations from different provinces of northern China (1.4% and 2.3%) compared with previously tested susceptible field populations (0%). We isolated two resistant strains: one from each of the two field-selected populations. Relative to a susceptible strain, the two strains had 460- and 1200-fold resistance to Cry1Ac, respectively. Both strains had dominant resistance to a diagnostic concentration of Cry1Ac in diet and to Bt cotton leaves containing Cry1Ac. Both strains had low, but significant cross-resistance to Cry2Ab (4.2- and 5.9-fold), which is used widely as the second toxin in two-toxin Bt cotton. Compared with resistance in other strains of H. armigera, the resistance in the two strains characterized here may be especially difficult to suppress.

Journal ArticleDOI
TL;DR: Purification by metal-chelate affinity chromatography significantly affected Vip3Ae toxicity against the two insect species, including Spodoptera frugiperda and Agrotis ipsilon.

Journal ArticleDOI
04 Jan 2013-PLOS ONE
TL;DR: It is concluded that Cry34Ab1/Cry35Ab1 are compatible with Cry3Aa, Cry6 aa, or Cry8Ba for deployment as insect resistance management pyramids for in-plant control of western corn rootworm.
Abstract: Background Bacillus thuringiensis (Bt) Cry34Ab1/Cry35Ab1 are binary insecticidal proteins that are co-expressed in transgenic corn hybrids for control of western corn rootworm, Diabrotica virgifera virgifera LeConte. Bt crystal (Cry) proteins with limited potential for field-relevant cross-resistance are used in combination, along with non-transgenic corn refuges, as a strategy to delay development of resistant rootworm populations. Differences in insect midgut membrane binding site interactions are one line of evidence that Bt protein mechanisms of action differ and that the probability of receptor-mediated cross-resistance is low.

Journal ArticleDOI
27 Mar 2013-PLOS ONE
TL;DR: The studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris and demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms.
Abstract: The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies However, using Cry protein susceptible hosts as prey often compromises such studies To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T ni), Cry1Ac/Cry2Ab produced in Bt cotton (T ni), and Cry1F produced in Bt maize (S frugiperda) Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewing Chrysoperla rufilabris Fitness parameters (larval survival, development time, fecundity and egg hatch) of C rufilabris were assessed over two generations There were no differences in any of the fitness parameters regardless if C rufilabris consumed prey (T ni or S frugiperda) that had consumed Bt or non-Bt plants Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C rufilabris This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms

Journal ArticleDOI
07 Nov 2013-PLOS ONE
TL;DR: It is reported that genetically modified Bt toxins Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1 Ab and Cry 1Ac.
Abstract: Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.

Journal ArticleDOI
11 Sep 2013-PLOS ONE
TL;DR: It is shown that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity and the three-dimensional structure of OAIP-1 revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity.
Abstract: Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injected into prey and predators via a hypodermic needle-like fang. Thus, it has been assumed that spider-venom peptides are not orally active and are therefore unlikely to be useful insecticides. Contrary to this dogma, we show that it is possible to isolate spider-venom peptides with high levels of oral insecticidal activity by directly screening for per os toxicity. Using this approach, we isolated a 34-residue orally active insecticidal peptide (OAIP-1) from venom of the Australian tarantula Selenotypus plumipes. The oral LD50 for OAIP-1 in the agronomically important cotton bollworm Helicoverpa armigera was 104.2±0.6 pmol/g, which is the highest per os activity reported to date for an insecticidal venom peptide. OAIP-1 is equipotent with synthetic pyrethroids and it acts synergistically with neonicotinoid insecticides. The three-dimensional structure of OAIP-1 determined using NMR spectroscopy revealed that the three disulfide bonds form an inhibitor cystine knot motif; this structural motif provides the peptide with a high level of biological stability that probably contributes to its oral activity. OAIP-1 is likely to be synergized by the gut-lytic activity of the Bacillus thuringiensis Cry toxin (Bt) expressed in insect-resistant transgenic crops, and consequently it might be a good candidate for trait stacking with Bt.

Journal ArticleDOI
TL;DR: The first lines of evidence are provided to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca, which has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops and may be useful as a potential bioinsecticide.
Abstract: Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A remains unproven. In the present paper, we first cloned a cadherin-like gene, SeCad1b, from Spodoptera exigua (relatively susceptible to Cry1Ca). SeCad1b was highly expressed in the larval gut but scarcely detected in fat body, Malpighian tubules, and remaining carcass. Second, we bacterially expressed truncated cadherin rSeCad1bp and its interspecific homologue rHaBtRp from Helicoverpa armigera (more sensitive to Cry1Ac) containing the putative toxin-binding regions. Competitive binding assays showed that both Cry1Ca and Cry1Ac could bind to rSeCad1bp and rHaBtRp, and they did not compete with each other. Third, Cry1Ca ingestion killed larvae and decreased the weight of surviving larvae. Dietary introduction of SeCad1b double-stranded RNA (dsRNA) reduced approximately 80% of the target mRNA and partially alleviated the negative effect of Cry1Ca on larval survival and growth. Lastly, rSeCad1bp and rHaBtRp differentially enhanced the negative effects of Cry1Ca and Cry1Ac on the larval mortalities and growth of S. exigua and H. armigera. Thus, we provide the first lines of evidence to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca.

Journal ArticleDOI
TL;DR: In this article, the authors applied matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass fingerprinting to the classification of these Bacillus species.

Journal ArticleDOI
25 Jan 2013-PLOS ONE
TL;DR: Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment, which may contribute to the developmental arrest that was observed with larvae fed the Cry3Ba producing strain.
Abstract: Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC50 values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18) and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II). Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge on how insects respond to Bt intoxication will allow designing more effective management strategies for pest control.