scispace - formally typeset

Topic

Backhaul (telecommunications)

About: Backhaul (telecommunications) is a(n) research topic. Over the lifetime, 5651 publication(s) have been published within this topic receiving 96881 citation(s).
Papers
More filters

Journal ArticleDOI
Naga Bhushan1, Junyi Li1, Durga Prasad Malladi1, Rob Gilmore1  +5 moreInstitutions (1)
TL;DR: This article explores network densification as the key mechanism for wireless evolution over the next decade if it is complemented by backhaul densification, and advanced receivers capable of interference cancellation.
Abstract: This article explores network densification as the key mechanism for wireless evolution over the next decade. Network densification includes densification over space (e.g, dense deployment of small cells) and frequency (utilizing larger portions of radio spectrum in diverse bands). Large-scale cost-effective spatial densification is facilitated by self-organizing networks and intercell interference management. Full benefits of network densification can be realized only if it is complemented by backhaul densification, and advanced receivers capable of interference cancellation.

1,270 citations


Journal ArticleDOI
Ejder Bastug1, Mehdi Bennis2, Merouane Debbah1Institutions (2)
Abstract: This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context awareness, and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands via caching at base stations and users' devices. In order to show the effectiveness of proactive caching, we examine two case studies that exploit the spatial and social structure of the network, where proactive caching plays a crucial role. First, in order to alleviate backhaul congestion, we propose a mechanism whereby files are proactively cached during off-peak periods based on file popularity and correlations among user and file patterns. Second, leveraging social networks and D2D communications, we propose a procedure that exploits the social structure of the network by predicting the set of influential users to (proactively) cache strategic contents and disseminate them to their social ties via D2D communications. Exploiting this proactive caching paradigm, numerical results show that important gains can be obtained for each case study, with backhaul savings and a higher ratio of satisfied users of up to 22 and 26 percent, respectively. Higher gains can be further obtained by increasing the storage capability at the network edge.

1,042 citations


Journal ArticleDOI
Ralf Irmer1, Heinz Droste2, Patrick Marsch, Michael Grieger  +5 moreInstitutions (5)
TL;DR: The principal feasibility of COMP is shown in two field testbeds with multiple sites and different backhaul solutions between the sites, and significant gains can be shown for both the uplink and downlink.
Abstract: Coordinated multipoint or cooperative MIMO is one of the promising concepts to improve cell edge user data rate and spectral efficiency beyond what is possible with MIMOOFDM in the first versions of LTE or WiMAX. Interference can be exploited or mitigated by cooperation between sectors or different sites. Significant gains can be shown for both the uplink and downlink. A range of technical challenges were identified and partially addressed, such as backhaul traffic, synchronization and feedback design. This article also shows the principal feasibility of COMP in two field testbeds with multiple sites and different backhaul solutions between the sites. These activities have been carried out by a powerful consortium consisting of universities, chip manufacturers, equipment vendors, and network operators.

1,010 citations


Journal ArticleDOI
Xiaofei Wang1, Min Chen1, Tarik Taleb, Adlen Ksentini2  +1 moreInstitutions (3)
TL;DR: A novel edge caching scheme based on the concept of content-centric networking or information-centric networks is proposed and evaluated, using trace-driven simulations to evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks.
Abstract: The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.

1,002 citations


Journal ArticleDOI
Sooyoung Hur1, Taejoon Kim2, David J. Love1, James V. Krogmeier1  +2 moreInstitutions (3)
TL;DR: This paper proposes the use of outdoor millimeter wave communications for backhaul networking between cells and mobile access within a cell, and proposes an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks.
Abstract: Recently, there has been considerable interest in new tiered network cellular architectures, which would likely use many more cell sites than found today. Two major challenges will be i) providing backhaul to all of these cells and ii) finding efficient techniques to leverage higher frequency bands for mobile access and backhaul. This paper proposes the use of outdoor millimeter wave communications for backhaul networking between cells and mobile access within a cell. To overcome the outdoor impairments found in millimeter wave propagation, this paper studies beamforming using large arrays. However, such systems will require narrow beams, increasing sensitivity to movement caused by pole sway and other environmental concerns. To overcome this, we propose an efficient beam alignment technique using adaptive subspace sampling and hierarchical beam codebooks. A wind sway analysis is presented to establish a notion of beam coherence time. This highlights a previously unexplored tradeoff between array size and wind-induced movement. Generally, it is not possible to use larger arrays without risking a corresponding performance loss from wind-induced beam misalignment. The performance of the proposed alignment technique is analyzed and compared with other search and alignment methods. The results show significant performance improvement with reduced search time.

975 citations


Network Information
Related Topics (5)
Wireless network

122.5K papers, 2.1M citations

93% related
Network packet

159.7K papers, 2.2M citations

92% related
Fading

55.4K papers, 1M citations

92% related
Wireless ad hoc network

49K papers, 1.1M citations

92% related
Wireless

133.4K papers, 1.9M citations

91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021320
2020503
2019565
2018596
2017584