scispace - formally typeset
Search or ask a question
Topic

Backhaul (telecommunications)

About: Backhaul (telecommunications) is a research topic. Over the lifetime, 5651 publications have been published within this topic receiving 96881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey makes an exhaustive review on the state-of-the-art research efforts on mobile edge networks, including definition, architecture, and advantages, and presents a comprehensive survey of issues on computing, caching, and communication techniques at the network edge.
Abstract: As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures, which bring network functions and contents to the network edge, are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks, including definition, architecture, and advantages. Next, a comprehensive survey of issues on computing, caching, and communication techniques at the network edge is presented. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks, such as cloud technology, SDN/NFV, and smart devices are discussed. Finally, open research challenges and future directions are presented as well.

782 citations

Proceedings ArticleDOI
08 Jun 2015
TL;DR: In this article, the authors proposed a novel association algorithm and proved its superiority w.r.t. prior art by means of simulations that are based on Vodafone's small cell trial network and employing a high resolution pathloss prediction and realistic user distributions.
Abstract: Until the 4th Generation (4G) cellular 3GPP systems, a user equipment's (UE) cell association has been based on the downlink received power from the strongest base station. Recent work has shown that - with an increasing degree of heterogeneity in emerging 5G systems - such an approach is dramatically suboptimal, advocating for an independent association of the downlink and uplink where the downlink is served by the macro cell and the uplink by the nearest small cell. In this paper, we advance prior art by explicitly considering the cell-load as well as the available backhaul capacity during the association process. We introduce a novel association algorithm and prove its superiority w.r.t. prior art by means of simulations that are based on Vodafone's small cell trial network and employing a high resolution pathloss prediction and realistic user distributions. We also study the effect that different power control settings have on the performance of our algorithm.

756 citations

Journal ArticleDOI
TL;DR: A new architecture based on distributed caching of the content in femtobasestations with small or non-existing backhaul capacity but with considerable storage space, called helper nodes is presented, which allows an improvement in the video throughput without deployment of any additional infrastructure.
Abstract: We present a new architecture to handle the ongoing explosive increase in the demand for video content in wireless networks. It is based on distributed caching of the content in femtobasestations with small or non-existing backhaul capacity but with considerable storage space, called helper nodes. We also consider using the wireless terminals themselves as caching helpers, which can distribute video through device-todevice communications. This approach allows an improvement in the video throughput without deployment of any additional infrastructure. The new architecture can improve video throughput by one to two orders-of-magnitude.

690 citations

Posted Content
TL;DR: In this paper, the authors propose a system where helpers with low-rate backhaul but high storage capacity cache popular video files, and analyze the optimum way of assigning files to the helpers in order to minimize the expected downloading time for files.
Abstract: Video on-demand streaming from Internet-based servers is becoming one of the most important services offered by wireless networks today. In order to improve the area spectral efficiency of video transmission in cellular systems, small cells heterogeneous architectures (e.g., femtocells, WiFi off-loading) are being proposed, such that video traffic to nomadic users can be handled by short-range links to the nearest small cell access points (referred to as "helpers"). As the helper deployment density increases, the backhaul capacity becomes the system bottleneck. In order to alleviate such bottleneck we propose a system where helpers with low-rate backhaul but high storage capacity cache popular video files. Files not available from helpers are transmitted by the cellular base station. We analyze the optimum way of assigning files to the helpers, in order to minimize the expected downloading time for files. We distinguish between the uncoded case (where only complete files are stored) and the coded case, where segments of Fountain-encoded versions of the video files are stored at helpers. We show that the uncoded optimum file assignment is NP-hard, and develop a greedy strategy that is provably within a factor 2 of the optimum. Further, for a special case we provide an efficient algorithm achieving a provably better approximation ratio of $1-(1-1/d)^d$, where $d$ is the maximum number of helpers a user can be connected to. We also show that the coded optimum cache assignment problem is convex that can be further reduced to a linear program. We present numerical results comparing the proposed schemes.

673 citations

Posted Content
TL;DR: In this article, the authors present a new architecture to handle the ongoing explosive increase in the demand for video content in wireless networks, based on distributed caching of the content in femto-basestations with small or non-existing backhaul capacity but with considerable storage space.
Abstract: We present a new architecture to handle the ongoing explosive increase in the demand for video content in wireless networks. It is based on distributed caching of the content in femto-basestations with small or non-existing backhaul capacity but with considerable storage space, called helper nodes. We also consider using the mobile terminals themselves as caching helpers, which can distribute video through device-to-device communications. This approach allows an improvement in the video throughput without deployment of any additional infrastructure. The new architecture can improve video throughput by one to two orders-of-magnitude.

573 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
93% related
Network packet
159.7K papers, 2.2M citations
92% related
Fading
55.4K papers, 1M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022446
2021328
2020504
2019565
2018596