scispace - formally typeset
Search or ask a question
Topic

Backhaul (telecommunications)

About: Backhaul (telecommunications) is a research topic. Over the lifetime, 5651 publications have been published within this topic receiving 96881 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive survey on various challenges faced by free space optical communication (FSO) communication system for ground-to-satellite (G2S) or satellite-toground (S2G) and inter-Satellite (I2I) links.
Abstract: In recent years, free space optical communication has gained significant importance owing to its unique features: large bandwidth, license-free spectrum, high data rate, easy and quick deployability, less power and low mass requirements. FSO communication uses the optical carrier in the near infrared band to establish either terrestrial links within the Earth's atmosphere or inter-satellite or deep space links or ground-to-satellite or satellite-to-ground links. However, despite the great potential of FSO communication, its performance is limited by the adverse effects viz., absorption, scattering, and turbulence of the atmospheric channel. This paper presents a comprehensive survey on various challenges faced by FSO communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. It also provides details of various performance mitigation techniques in order to have high link availability and reliability. The first part of the paper will focus on various types of impairments that pose a serious challenge to the performance of optical communication system for ground-to-satellite or satellite-to-ground and inter-satellite links. The latter part of the paper will provide the reader with an exhaustive review of various techniques both at physical layer as well as at the other layers i.e., link, network or transport layer to combat the adverse effects of the atmosphere. It also uniquely presents a recently developed technique using orbital angular momentum for utilizing the high capacity advantage of the optical carrier in case of space-based and near-Earth optical communication links. This survey provides the reader with comprehensive details on the use of space-based optical backhaul links in order to provide high-capacity and low-cost backhaul solutions.

479 citations

Journal ArticleDOI
TL;DR: This paper presents a content-centric transmission design in a cloud radio access network by incorporating multicasting and caching, and reformulates an equivalent sparse multicast beamforming (SBF) problem, transformed into the difference of convex programs and effectively solved using the convex-concave procedure algorithms.
Abstract: This paper presents a content-centric transmission design in a cloud radio access network by incorporating multicasting and caching. Users requesting the same content form a multicast group and are served by a same cluster of base stations (BSs) cooperatively. Each BS has a local cache, and it acquires the requested contents either from its local cache or from the central processor via backhaul links. We investigate the dynamic content-centric BS clustering and multicast beamforming with respect to both channel condition and caching status. We first formulate a mixed-integer nonlinear programming problem of minimizing the weighted sum of backhaul cost and transmit power under the quality-of-service constraint for each multicast group. Theoretical analysis reveals that all the BSs caching a requested content can be included in the BS cluster of this content, regardless of the channel conditions. Then, we reformulate an equivalent sparse multicast beamforming (SBF) problem. By adopting smoothed $\ell _{0}$ -norm approximation and other techniques, the SBF problem is transformed into the difference of convex programs and effectively solved using the convex-concave procedure algorithms. Simulation results demonstrate significant advantage of the proposed content-centric transmission. The effects of heuristic caching strategies are also evaluated.

468 citations

Journal ArticleDOI
TL;DR: The feasibility of mmWave massive-MIMO-based wireless backhaul for 5G UDN is discussed, and the benefits and challenges are addressed, and a digitally controlled phase shifter network (DPSN)-based hybrid precoding/combining scheme for mmWavemassive MIMO is proposed.
Abstract: The ultra-dense network (UDN) has been considered as a promising candidate for future 5G networks to meet the explosive data demand. To realize UDN, a reliable, gigahertz bandwidth, and cost-effective backhaul connecting ultradense small-cell BSs and macrocell BS are prerequisite. Millimeter-wave can provide the potential gigabit-per-second traffic for wireless backhaul. Moreover, mmWave can easily be integrated with massive MIMO for improved link reliability. In this article, we discuss the feasibility of mmWave massive-MIMO-based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. In particular, we propose a digitally controlled phase shifter network (DPSN)-based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of the mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of a transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macrocell BS can simultaneously support multiple small-cell BSs with multiple streams for each small-cell BS, which is essentially different from conventional hybrid precoding/combining schemes, typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospects to enable mmWave massive-MIMO-based wireless backhaul for 5G UDN are discussed.

418 citations

Patent
14 Aug 2003
TL;DR: In this paper, the authors present a system for operating a power line communications system that is comprised of a plurality of network elements, which may take the form of repeaters, bypass devices, backhaul devices, wireless backhaul device, enhanced bypass device, communication interface devices and others.
Abstract: The present invention provides a system for operating a power line communications system that is comprised of a plurality of network elements, which may take the form of repeaters, bypass devices, backhaul devices, wireless backhaul devices, enhanced bypass device, communication interface devices and others. In one embodiment, two groups of network elements in the same electrical distribution system are isolated except selected communication link.

414 citations

Journal ArticleDOI
TL;DR: The proposed dynamic clustering algorithm can achieve significant performance gain over existing naive clustering schemes and is shown to solve the weighted sum rate maximization problem through a generalized weighted minimum mean square error approach.
Abstract: This paper considers a downlink cloud radio access network (C-RAN) in which all the base-stations (BSs) are connected to a central computing cloud via digital backhaul links with finite capacities. Each user is associated with a user-centric cluster of BSs; the central processor shares the user's data with the BSs in the cluster, which then cooperatively serve the user through joint beamforming. Under this setup, this paper investigates the user scheduling, BS clustering, and beamforming design problem from a network utility maximization perspective. Differing from previous works, this paper explicitly considers the per-BS backhaul capacity constraints. We formulate the network utility maximization problem for the downlink C-RAN under two different models depending on whether the BS clustering for each user is dynamic or static over different user scheduling time slots. In the former case, the user-centric BS cluster is dynamically optimized for each scheduled user along with the beamforming vector in each time-frequency slot, whereas in the latter case, the user-centric BS cluster is fixed for each user and we jointly optimize the user scheduling and the beamforming vector to account for the backhaul constraints. In both cases, the nonconvex per-BS backhaul constraints are approximated using the reweighted l 1 -norm technique. This approximation allows us to reformulate the per-BS backhaul constraints into weighted per-BS power constraints and solve the weighted sum rate maximization problem through a generalized weighted minimum mean square error approach. This paper shows that the proposed dynamic clustering algorithm can achieve significant performance gain over existing naive clustering schemes. This paper also proposes two heuristic static clustering schemes that can already achieve a substantial portion of the gain.

409 citations


Network Information
Related Topics (5)
Wireless network
122.5K papers, 2.1M citations
93% related
Network packet
159.7K papers, 2.2M citations
92% related
Fading
55.4K papers, 1M citations
92% related
Wireless ad hoc network
49K papers, 1.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023199
2022446
2021328
2020504
2019565
2018596