scispace - formally typeset
Search or ask a question
Topic

Backpropagation

About: Backpropagation is a research topic. Over the lifetime, 16976 publications have been published within this topic receiving 503094 citations. The topic is also known as: backward propagation of errors & backprop.


Papers
More filters
Proceedings ArticleDOI
28 Mar 1993
TL;DR: A learning algorithm for multilayer feedforward networks, RPROP (resilient propagation), is proposed that performs a local adaptation of the weight-updates according to the behavior of the error function to overcome the inherent disadvantages of pure gradient-descent.
Abstract: A learning algorithm for multilayer feedforward networks, RPROP (resilient propagation), is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behavior of the error function. Contrary to other adaptive techniques, the effect of the RPROP adaptation process is not blurred by the unforeseeable influence of the size of the derivative, but only dependent on the temporal behavior of its sign. This leads to an efficient and transparent adaptation process. The capabilities of RPROP are shown in comparison to other adaptive techniques. >

4,319 citations

Journal ArticleDOI
TL;DR: A probabilistic neural network that can compute nonlinear decision boundaries which approach the Bayes optimal is formed, and a fourlayer neural network of the type proposed can map any input pattern to any number of classifications.

3,772 citations

Book ChapterDOI
01 Jan 2001
TL;DR: Various methods applied to handwritten character recognition are reviewed and compared and Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques.
Abstract: Multilayer Neural Networks trained with the backpropagation algorithm constitute the best example of a successful Gradient-Based Learning technique. Given an appropriate network architecture, Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called Graph Transformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall performance measure. Two systems for on-line handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of Graph Transformer Networks. A Graph Transformer Network for reading bank check is also described. It uses Convolutional Neural Network character recognizers combined with global training techniques to provides record accuracy on business and personal checks. It is deployed commercially and reads several million checks per day.

3,417 citations

Posted Content
TL;DR: In this article, a generative and recognition model is proposed to represent approximate posterior distributions and act as a stochastic encoder of the data, which allows for joint optimisation of the parameters of both the generative model and the recognition model.
Abstract: We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.

3,316 citations

Posted Content
TL;DR: In this paper, a gradient reversal layer is proposed to promote the emergence of deep features that are discriminative for the main learning task on the source domain and invariant with respect to the shift between the domains.
Abstract: Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation. Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-of-the-art on Office datasets.

3,222 citations


Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
94% related
Feature extraction
111.8K papers, 2.1M citations
84% related
Deep learning
79.8K papers, 2.1M citations
83% related
Convolutional neural network
74.7K papers, 2M citations
83% related
Fuzzy logic
151.2K papers, 2.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023609
20221,330
2021807
2020876
2019839