scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: An outline of bacterial heme and iron siderophore transport exemplified by a few selected cases in which recent progress in the understanding of the transport mechanisms has been achieved is presented.

234 citations

Journal ArticleDOI
TL;DR: Three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria.

234 citations

Journal ArticleDOI
TL;DR: It is shown that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds, Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water.
Abstract: Proteorhodopsin phototrophy was recently discovered in oceanic surface waters. In an effort to characterize uncultured proteorhodopsin-exploiting bacteria, large-insert bacterial artificial chromosome (BAC) libraries from the Mediterranean Sea and Red Sea were analyzed. Fifty-five BACs carried diverse proteorhodopsin genes, and we confirmed the function of five. We calculate that proteorhodopsin-exploiting bacteria account for 13% of microorganisms in the photic zone. We further show that some proteorhodopsin-containing bacteria possess a retinal biosynthetic pathway and a reverse sulfite reductase operon, employed by prokaryotes oxidizing sulfur compounds. Thus, these novel phototrophs are an unexpectedly large and metabolically diverse component of the marine microbial surface water.

233 citations

Journal ArticleDOI
TL;DR: The evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enteritis faecium.
Abstract: In modern medicine, artificial devices are used for repair or replacement of damaged parts of the body, delivery of drugs, and monitoring the status of critically ill patients. However, artificial surfaces are often susceptible to colonization by bacteria and fungi. Once microorganisms have adhered to the surface, they can form biofilms, resulting in highly resistant local or systemic infections. At this time, the evidence suggests that (+)-usnic acid, a secondary lichen metabolite, possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium. Since lichens are surface-attached communities that produce antibiotics, including usnic acid, to protect themselves from colonization by other bacteria, we hypothesized that the mode of action of usnic acid may be utilized in the control of medical biofilms. We loaded (+)-usnic acid into modified polyurethane and quantitatively assessed the capacity of (+)-usnic acid to control biofilm formation by either S. aureus or Pseudomonas aeruginosa under laminar flow conditions by using image analysis. (+)-Usnic acid-loaded polymers did not inhibit the initial attachment of S. aureus cells, but killing the attached cells resulted in the inhibition of biofilm. Interestingly, although P. aeruginosa biofilms did form on the surface of (+)-usnic acid-loaded polymer, the morphology of the biofilm was altered, possibly indicating that (+)-usnic acid interfered with signaling pathways.

233 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044