scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the potential of LAB as biocontrol agents against postharvest rot as well as previous reports of antifungal activity by LAB.
Abstract: Summary. This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibition of P. expansum infection in wounds of Golden Delicious apples. Four strains (TC97, AC318, TM319, and FF441) reduced the fungal rot diameter of the apples by 20%; only Weissella cibaria strain TM128 decreased infection levels by 50%. Cell-free supernatants of selected antagonistic bacteria were studied to determine the nature of the antimicrobial compounds produced. Organic acids were the preferred mediators of inhibition but hydrogen peroxide was also detected when strains BC48, TM128, PM141 and FF441 were tested against E. carotovora. While previous reports of antifungal activity by LAB are scarce, our results support the potential of LAB as biocontrol agents against postharvest rot. [Int Microbiol 2008; 11(4):231-236].

224 citations

Journal ArticleDOI
TL;DR: A major role of the cellulose fibrils synthesized by A. tumefaciens appears to be anchoring the bacteria to the host cells, thereby aiding the production of tumors.
Abstract: During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were attached individually to the plant cell surface. The wild-type bacteria became surrounded by fibrils within 2 h after attachment. No fibrils were seen with the cellulose-minus mutants. Prolonged incubation of wild-type A. tumefaciens with carrot cells resulted in the formation of large aggregates of bacteria, bacterial fibrils, and carrot cells. No such aggregates were formed after the incubation of carrot cells with cellulose-minus A. tumefaciens. The absence of cellulose fibrils also caused an alteration in the kinetics of bacterial attachment to carrot cells. Cellulose synthesis was not required for bacterial virulence; the cellulose-minus mutants were all virulent. However, the ability of the parent bacterial strain to produce tumors was unaffected by washing the inoculation site with water, whereas the ability of the cellulose-minus mutants to form tumors was much reduced by washing the inoculation site with water. Thus, a major role of the cellulose fibrils synthesized by A. tumefaciens appears to be anchoring the bacteria to the host cells, thereby aiding the production of tumors.

224 citations

Journal Article

224 citations

Journal ArticleDOI
TL;DR: The inhibitory effect of lipophilic acids, antimicrobial food additives, and analgesics-antipyretics was examined in bacteria and mammalian cells and found neither amino acid uptake nor adenine 5′-triphosphate synthesis are inhibited by fatty acids at concentrations that completely inhibit growth.
Abstract: The inhibitory effect of lipophilic acids, antimicrobial food additives, and analgesics-antipyretics was examined at concentrations from 0.1 to 100 mM in bacteria ( Bacillus subtilis and Escherichia coli ) and mammalian cells (HeLa, human fibroblasts, and mouse neuroblastoma cells). Most compounds inhibit the growth of HeLa cells about as efficiently as that of B. subtilis . However, butyrate and propionate, as well as acetaminophen, antipyrene, phenacetin, and salicylamide, inhibit HeLa at millimolar concentrations whereas, at least 10 times higher concentrations are needed to inhibit B. subtilis . The concentrations needed to inhibit growth by 50% decrease with increasing octanol-water partition coefficients of the compound. Growth of E. coli is inhibited similar to that of B. subtilis by all compounds except butylbenzoate, decanoate, and linoleate which cannot penetrate the lipopolysaccharide layer. All growth inhibitors inhibit amino acid uptake into bacteria and their vesicles, and oxygen consumption in bacteria. In HeLa cells or human fibroblasts, neither amino acid uptake nor adenine 5′-triphosphate synthesis are inhibited by fatty acids at concentrations that completely inhibit growth. Short chain fatty acids (propionate, butyrate, and pentanoate) induce in HeLa the formation of cell processes. In neuroblastoma cells, grown in the presence of 10% fetal calf serum, butyrate also induces such processes which slowly continue to grow in length for at least 7 days; these processes differ in speed of formation, width, and cycloheximide susceptibility from the thin processes produced by serum deprivation alone. Images

223 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044