scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: Survival of rainbow trout infected with vibriosis was improved 13-43% by six out of nine antagonistic strains tested in vivo, and the addition of live bacterial cultures to fish-rearing water may improve survival of the fish; however, in vitro antagonism could not completely predict an in vivo effect.
Abstract: The antibacterial properties of the indigenous microflora of rainbow trout (Oncorhynchus mykiss Walbaum) and the potential use of inhibitory bacteria as fish probiotics were investigated. A total of 1018 bacteria and yeasts were isolated on tryptone soy agar (TSA) from skin, gills and intestine. Forty-five of these inhibited growth of the fish pathogenic bacterium Vibrio anguillarum in a well diffusion assay. The antagonism was most prominent among Pseudomonas spp., as 28 (66%) of the antagonistic bacteria belonged to this genus, despite constituting only 15% of the total tested flora. As pseudomonads are typically siderophore producers, chrome azurol S (CAS) agar was used as a semi-selective medium for isolation of antagonistic bacteria. On this medium, 75% of the iron-chelating strains were inhibitory to V. anguillarum. Eight strains out of a subset of 11 antagonists caused a 3-6 log unit reduction in the density of V. anguillarum [measured by polymerase chain reaction (PCR) detection in a most probable number (MPN) regimen] in a broth co-culture assay. Survival of rainbow trout infected with vibriosis was improved 13-43% by six out of nine antagonistic strains tested in vivo. All disease-protecting strains were pseudomonads, isolated from CAS plates, whereas two Carnobacterium spp. that were antagonistic in in vitro well diffusion assays did not alter the accumulated mortality of rainbow trout. The addition of live bacterial cultures to fish-rearing water may thus improve survival of the fish; however, in vitro antagonism could not completely predict an in vivo effect. Further studies on the underlying mechanism of activity are required to design appropriate selection criteria for fish probiotic bacteria.

215 citations

Journal ArticleDOI
TL;DR: The results suggest that the application of in situ hybridization techniques can yield a more complete understanding of the microbial populations involved in the purification of sewage.

215 citations

Journal ArticleDOI
TL;DR: This study investigated the distribution of bacteria in groundwater from 16 different levels in five boreholes in granite bedrock down to a maximum of 860 m, finding that the bulk water microbial cells in deep groundwater may be inactive cells detached from active biofilms on the rock surface.
Abstract: This study investigated the distribution of bacteria in groundwater from 16 different levels in five boreholes in granite bedrock down to a maximum of 860 m. Enrichment cultures were used to assay the groups of bacteria present. Autoradiographic studies with14C- or3H-labeled formate, methanol, acetate, lactate, glucose, sodium bicarbonate, leucine, glutamine, thymidine, orN-acetyl-glucosamine were used to obtain information about bacteria active in substrate uptake. The biofilm formation potential was studied in one borehole. The chemical environment in the groundwater was anaerobic with an Eh between −112 and −383 mV, a pH usually around 8, and a temperature range of 10.2 to 20.5°C, depending on the depth. The organic content ranged between <0.5 and 9.5 mg total organic carbon liter−1. Carbon dioxide, hydrogen, hydrogen sulfide, and methane were present in the water. The nitrate, nitrite, and phosphate concentrations were close to, or below, the detection limits, while there were detectable amounts of NH 4 + in the range of 4 to 330 μg liter−1. The average total number of bacteria was 2.6×105 bacteria ml−1, as determined with an acridine organge direct-count (AODC) technique. The average number of bacteria that grew on a medium with 1.5 g liter−1 of organic substrate was 7.7×103 colony-forming units (CFU) ml−1. The majority of these were facultatively anaerobic, gram-negative, nonfermenting heterotrophs. Enrichment cultures indicated the presence of anaerobic bacteria capable of growth on C-1 compounds and hydrogen, presumably methanogenic bacteria. Most probable number assays with sulfate and lactate revealed up to 5.6×104 viable sulfate-reducing bacteria per ml. A biofilm development experiment indicated an active attached microbial population. Active substrate uptake could not be registered with the bulk water populations, except for an uptake of leucine not associated with growth. The bulk water microbial cells in deep groundwater may be inactive cells detached from active biofilms on the rock surface.

215 citations

Journal ArticleDOI
TL;DR: Future strategies in beta-lactam design must take into account the complex nature of resistance in Gram-negative pathogens, because multi-drug resistant phenotype that challenges health care workers worldwide is caused by an array of resistance determinants.

214 citations

Journal ArticleDOI
TL;DR: It is concluded that efficient DNA transfer from gram-negative to gram-positive bacteria, at least to coryneform bacteria, is conceivable in certain natural ecosystems.
Abstract: We report on the mobilization of shuttle plasmids from gram-negative Escherichia coli to gram-positive corynebacteria mediated by P-type transfer functions. Introduction of plasmids into corynebacteria was markedly enhanced after heat treatment of the recipient cells. High-frequency plasmid transfer was also observed when the restriction system of the recipient was mutated. On the basis of our data, we conclude that efficient DNA transfer from gram-negative to gram-positive bacteria, at least to coryneform bacteria, is conceivable in certain natural ecosystems.

214 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044