scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: The findings show that archaea can be intimately connected with infectious diseases and thus support the hypothesis that members of the domain Archaea may have a role as human pathogens.
Abstract: Members of the domain Archaea, one of the three domains of life, are a highly diverse group of prokaryotes, distinct from bacteria and eukaryotes. Despite their abundance and ubiquity on earth, including their close association with humans, animals, and plants, so far no pathogenic archaea have been described. As some archaea live in close proximity to anaerobic bacteria, for instance, in the human gut system and in periodontal pockets, the aim of our study was to assess whether archaea might possibly be involved in human endodontic infections, which are commonly polymicrobial. We analyzed 20 necrotic uniradicular teeth with radiographic evidence of apical periodontitis and with no previous endodontic treatment. Using real-time quantitative PCR based on the functional gene mcrA (encoding the methyl coenzyme M reductase, specific to methanogenic archaea) and on archaeal 16S rRNA genes, we found five cases to be positive. Direct sequencing of PCR products from both genes showed that the archaeal community was dominated by a Methanobrevibacter oralis-like phylotype. The size of the archaeal population at the diseased sites ranged from 1.3 × 105 to 6.8 × 105 16S rRNA gene target molecule numbers and accounted for up to 2.5% of the total prokaryotic community (i.e., bacteria plus archaea). Our findings show that archaea can be intimately connected with infectious diseases and thus support the hypothesis that members of the domain Archaea may have a role as human pathogens.

154 citations

Journal ArticleDOI
TL;DR: Haloperoxidases, enzymes capable of catalyzing the formation of carbon halogen bonds in the presence of hydrogen peroxide and halide ions have been isolated and characterized from different bacteria, but these enzymes turned out to be very unspecific and are obviously not the type of halogenating enzymes responsible for theformation of halometabolites in bacteria.
Abstract: Halogenated metabolites, originally thought to be infrequent in nature, are actually nothing unusual at all, and are produced by many different organisms, including bacteria. Whereas marine bacteria usually produce brominated compounds, terrestrial bacteria preferentially synthesize chlorometabolites, but fluoro- and iodometabolites can also be found. Haloperoxidases, enzymes capable of catalyzing the formation of carbon halogen bonds in the presence of hydrogen peroxide and halide ions (Cl-, Br- and I-) have been isolated and characterized from different bacteria. These enzymes turned out to be very unspecific and are obviously not the type of halogenating enzymes responsible for the formation of halometabolites in bacteria. A yet-unknown type of halogenating enzyme having both substrate and regio-specificity must be involved in the biosynthesis of halogenated compounds.

154 citations

Journal ArticleDOI
TL;DR: The procedure described here offers a simple efficient means of introducing exogenous surface antigens, in their native form, into the outer membranes of Gram-negative bacteria for possible vaccine use.
Abstract: Incubation of intact Salmonella typhi Ty21a, Salmonella enterica serovar Typhimurium (Salmonella typhimurium) aroA or Escherichia coli DH5α with membrane vesicles (MVs) derived from either Shigella flexneri M90T or Pseudomonas aeruginosa dsp89 resulted in a significant incorporation of vesicle antigens into the outer membrane of the bacteria; each recipient strain possessed a surface mosaic of new Shigella and Pseudomonas antigens intermixed with the native antigens of the Salmonella or Escherichia strains. Electron microscopy of preparations during the integration of vesicle antigens revealed that the MVs rapidly fused with the outer membrane of the host strains. Western blot analysis of host bacteria confirmed the integration of foreign antigens. Quantitative analysis for binding and fusion of antigens using an ELISA showed that approximately 78·7 ± 12·8 ng of the Pseudomonas and 67·5 ± 13·8 ng of the Shigella LPSs (μg host protein)−1 were integrated into the Sal. typhimurium strain. Similar integrations of the Shigella or Pseudomonas vesicles were found with the E. coli or Sal. typhi strains. There was no loss of viability in the recipient bacteria after incorporation of the MV's, although vesicle antigens became diluted during continued growth as daughter cells shared the vesicle antigens. The new antigens were highly stable after being incorporated into recipient strains, being able to withstand storage of several months at 4°C as well as several cycles of freezing and thawing. Since the recipient bacteria are common vaccine strains, the procedure described here offers a simple efficient means of introducing exogenous surface antigens, in their native form, into the outer membranes of Gram-negative bacteria for possible vaccine use.

154 citations

Journal ArticleDOI
TL;DR: The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.
Abstract: Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60°C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe3O4), siderite (FeCO3), rhodochrosite (MnCO3), and uraninite (UO2). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.

154 citations

Journal ArticleDOI
TL;DR: High-performance liquid chromatography analyses showed that cyanuric acid degradation was not encoded by pADP-1, which suggests a potential molecular mechanism for the dispersion of theatzABC genes to other soil bacteria.
Abstract: Pseudomonas sp. strain ADP initiates atrazine catabolism via three enzymatic steps, encoded by atzA, -B, and -C, which yield cyanuric acid, a nitrogen source for many bacteria. In-well lysis, Southern hybridization, and plasmid transfer studies indicated that the atzA, -B, and -C genes are localized on a 96-kb self-transmissible plasmid, pADP-1, in Pseudomonas sp. strain ADP. High-performance liquid chromatography analyses showed that cyanuric acid degradation was not encoded by pADP-1. pADP-1 was transferred to Escherichia coli strains at a frequency of 4.7 x 10(-2). This suggests a potential molecular mechanism for the dispersion of the atzABC genes to other soil bacteria.

154 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044