scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently.
Abstract: The effect of solar radiation and predacious microorganisms on the survival of bacteria of fecal and plant origin was studied. The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently. The effect of solar radiation on microbial predators was negligible, whereas the susceptibility of bacteria to light-induced decay varied from one organism to another, as follows: Klebsiella pneumoniae greater than E. coli greater than Salmonella typhimurium, Streptococcus faecium, Enterobacter aerogenes, Erwinia herbicola.

151 citations

Journal ArticleDOI
TL;DR: A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended and provided evidence for the presence of 3HP in the PHA of many bacteria.
Abstract: Twenty-four different strains of aerobic Gram-negative bacteria, mainly belonging to the genera Alcaligenes, Paracoccus, Pseudomonas and Methylobacterium, were examined with respect to their ability to utilize 4-hydroxyvaleric acid (4HV), 4-valerolactone (4VL) and 3-hydroxypropionic acid (3HP) as carbon sources for growth and for accumulation of polyhydroxyalkanoic acid (PHA). A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended for the detection of derivatives obtained from the methanolysis of 4-hydroxybutyric acid (4HB) and 4HV. Most of the Alcaligenes species and P. oxalaticus Ox1 accumulated a terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV) and 4HV as constituents from 4HV or 4VL as sole carbon sources in batch, fed-batch or two-stage fed-batch cultures. Poly(3HB-co-3HV-co-4HV) accumulated from 4HV by A. eutrophus strain NCIB 11599 amounted to approximately 50% of the cell dry matter and was composed of 42.0 mol % 3HB, 52.2 mol % 3HV and 5.6 mol % 4HV, respectively. Pseudomonads, which belong to the rRNA homology group I, were not able to incorporate 4HV. With 3HP as carbon source, the GC analysis provided evidence for the presence of 3HP in the PHA of many bacteria. Nuclear magnetic resonance spectroscopic analysis confirmed that, for example, A. eutrophus strain TF93 accumulated poly(3HB-co-3HP) with 98 mol % 3HB and 2 mol % 3HP if the cells were cultivated in the presence of 0.5% (w/v) 3HP.

151 citations

Journal ArticleDOI
TL;DR: Results indicate that LysAB2 is an effective lysozyme against bacteria, and they suggest that it is a good candidate for a therapeutic/disinfectant agent to control nosocomial infections caused by multiple drug-resistant bacteria.
Abstract: To investigate the nature and origin of the antibacterial activity of the lytic phage ϕAB2 toward Acinetobacter baumannii, we successfully isolated and characterized a novel phage lysozyme (endolysin) from ϕAB2 and named it LysAB2. To analyze antibacterial activity of LysAB2, the complete LysAB2 and two deletion derivatives were constructed, purified and characterized. Zymographic assays showed that only the intact LysAB2 could lyse the peptidoglycan of A. baumannii and the Staphylococcus aureus cell wall. Antibacterial analysis also showed that only the intact LysAB2 retained the complete bactericidal activity. When applied exogenously, LysAB2 exhibited a broad bacteriolytic activity against a number of Gram-negative and Gram-positive bacteria. Thermostability assays indicated that LysAB2 was stable at 20∼40°C. Its optimal pH was 6.0, and it was active from pH 4 to 8. Scanning electron microscopy revealed that exposure to 500 μg ml−1 LysAB2 for up to 60 min caused a remarkable modification of the cell shape of the bacteria. Treating bacteria with LysAB2 clearly enhanced permeation of the bacterial cytoplasmic membrane. These results indicate that LysAB2 is an effective lysozyme against bacteria, and they suggest that it is a good candidate for a therapeutic/disinfectant agent to control nosocomial infections caused by multiple drug-resistant bacteria.

151 citations

Journal ArticleDOI
TL;DR: These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.
Abstract: The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and d-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Northern blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The d-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial d-xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25±13 nmol min−1mg protein-1). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.

151 citations

Journal ArticleDOI
TL;DR: It is concluded that mucin glycoproteins in the human gut are degraded by bacterial subpopulations that average 1% of total fecal bacteria in healthy subjects, and may be regarded as one or more functionally distinct subsets of the normal fecal microflora.

151 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044