scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria that produced preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated.
Abstract: Antimicrobial peptides, bacteriocins, produced by lactic acid bacteria were adsorbed on the cells of producing strains and other gram-positive bacteria. pH was a crucial factor in determining the degree of adsorption of these peptides onto cell surfaces. In general, between 93 and 100% of the bacteriocin molecules were adsorbed at pHs near 6.0, and the lowest (< or = 5%) adsorption took place at pH 1.5 to 2.0. On the basis of this property, a novel isolation method was developed for bacteriocins from four genera of lactic acid bacteria. By using this method we made preparations of pediocin AcH, nisin, sakacin A, and leuconocin Lcm1 that were potent and concentrated. This method produced a higher yield than isolation procedures, which rely on precipitation of the bacteriocins from the cell-free culture liquor. It is simple and can be used to produce large quantities of bacteriocins from lactic acid bacteria to be used as food biopreservatives.

548 citations

Book ChapterDOI
01 Jan 2000
TL;DR: This chapter describes two procedures for the isolation of chromosomal DNA from E. coli that can be used for most gram-negative and gram-positive bacteria or modified to isolate DNA from organisms other than bacteria.
Abstract: This chapter describes two procedures for the isolation of chromosomal DNA from E. coli. These procedures can be used for most gram-negative and gram-positive bacteria or modified to isolate DNA from organisms other than bacteria.

546 citations

Journal ArticleDOI
TL;DR: It is suggested that structured habitats are more favorable for the evolution of colicinogenic bacteria than liquid cultures, which exist as randomly distributed individuals and as single-clone colonies.
Abstract: We demonstrate that in liquid cultures, defined in this study as a mass habitat, the outcome of competition between Escherichia coli that produce an antibacterial toxin (colicin) and sensitive E. coli is frequency dependent; the colicinogenic bacteria are at an advantage only when fairly common (frequencies in excess of 2 X 10(-2)). However, we also show that in a soft agar matrix, a structured habitat, the colicinogenic bacteria have an advantage even when initially rare (frequencies as low as 10(-6)). These contrasting outcomes are attributed to the colicinogenic bacteria's lower intrinsic growth rate relative to the sensitive bacteria and the different manner in which bacteria and resources are partitioned in the two types of habitats. Bacteria in a liquid culture exist as randomly distributed individuals and the killing of sensitive bacteria by the colicin augments the amount of resource available to the colicinogenic bacteria to an extent identical to that experienced by the surviving sensitive bacteria. On the other hand, the bacteria in a soft agar matrix exist as single-clone colonies. As the colicinogenic colonies release colicin, they kill neighboring sensitive bacteria and form an inhibition zone around themselves. By this action, they increase the concentration of resources around themselves and overcome their growth rate disadvantage. We suggest that structured habitats are more favorable for the evolution of colicinogenic bacteria.

544 citations

Journal ArticleDOI
18 Sep 2009-Science
TL;DR: It is found that bacteria produce diverse D-amino acids as well, which accumulate at millimolar concentrations in supernatants of stationary phase cultures and appear to modulate synthesis of peptidoglycan, a strong and elastic polymer that serves as the stress-bearing component of the bacterial cell wall.
Abstract: In all known organisms, amino acids are predominantly thought to be synthesized and used as their L-enantiomers. Here, we found that bacteria produce diverse D-amino acids as well, which accumulate at millimolar concentrations in supernatants of stationary phase cultures. In Vibrio cholerae, a dedicated racemase produced D-Met and D-Leu, whereas Bacillus subtilis generated D-Tyr and D-Phe. These unusual D-amino acids appear to modulate synthesis of peptidoglycan, a strong and elastic polymer that serves as the stress-bearing component of the bacterial cell wall. D-Amino acids influenced peptidoglycan composition, amount, and strength, both by means of their incorporation into the polymer and by regulating enzymes that synthesize and modify it. Thus, synthesis of D-amino acids may be a common strategy for bacteria to adapt to changing environmental conditions.

541 citations

Journal ArticleDOI
TL;DR: A 16S rRNA-targeted oligonucleotide probe (NEU) specific for some representatives of the lithoautotrophic ammonia-oxidizing bacteria was developed based on comparative sequence analysis and showed promise in detecting dense cell clusters exclusively in those samples originating from sewage treatment plants with stable nitrification.

541 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044