scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
TL;DR: It is presented the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.
Abstract: In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

411 citations

Journal ArticleDOI
TL;DR: The adhesion of 12 different Lactobacillus strains was studied using Caco-2 cell line as an in vitro model for intestinal epithelium to show consistency in terms of percentage adhesion.

409 citations

Journal ArticleDOI
TL;DR: Data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders.
Abstract: Acquired antibiotic resistance, i.e. resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species living in habitats (e.g. human and animal intestines) which are regularly challenged with antibiotics. Most data are available for enterococci and enteric lactobacilli. Raw material from animals (milk and meat) which are inadvertantly contaminated with fecal matters during production will carry antibiotic resistant lactic acid bacteria into the final fermented products such as raw milk cheeses and raw sausages. The discovered conjugative genetic elements of LAB isolated from animals and food are very similar to elements studied previously in pathogenic streptococci and enterococci, e.g. θ-type replicating plasmids of the pAMβ1, pIP501-family, and transposons of the Tn916-type. Observed resistance genes include known genes like tetM, ermAM, cat, sat and vanA. A composite 29'871 bp resistance plasmid detected in Lactococcus lacti s subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes, cat and str from Staphylococcus aureus. Three out of five IS elements on the plasmid are almost or completely identical to IS1216 present in the vanA resistance transposon Tn1546. These data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances like enterococci is high in animals (and humans) which are regularly treated with antibiotics. The transfer of antibiotic resistant bacteria from animals into fermented and other food can be avoided if the raw substrate milk or meat is pasteurized or heat treated. Antibiotic resistance traits as selectable markers in genetic modification of lactic acid bacteria for different purposes are presently being replaced, e.g. by metabo lic traits to generate food-grade vectors.

406 citations

Journal ArticleDOI
TL;DR: To examine the possible role of carbohydrates as adhesion receptors for infection, several pulmonary pathogenic bacteria were studied for binding to glycosphingolipids to suggest that at least terminal or internal GalNAc beta 1-4Gal sequences unsubstituted with sialyl residues for binding are required.
Abstract: Pneumonia is one of the most common causes of death from infectious disease in the United States. To examine the possible role of carbohydrates as adhesion receptors for infection, several pulmonary pathogenic bacteria were studied for binding to glycosphingolipids. Radiolabeled bacteria were layered on thin-layer chromatograms of separated glycosphingolipids, and bound bacteria were detected by autoradiography. The classic triad of infectious bacteria found in cystic fibrosis, Pseudomonas aeruginosa, Haemophilus influenzae, and Staphylococcus aureus, along with other bacteria commonly implicated in typical pneumonia, such as Streptococcus pneumoniae, Klebsiella pneumoniae, and certain Escherichia coli, bind specifically to fucosylasialo-GM1 (Fuc alpha 1-2Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Cer), asialo-GM1 (Gal beta 1-3GalNAc beta 1-4Gal beta-1-4Galc beta 1-1Cer), and asialo-GM2 (GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer). Bacteria maintained in nutrient medium bind better than the same cells suspended in buffer. They do not bind to galactosylceramide, glucosylceramide, lactosylceramide, trihexosylceramide, globoside, paragloboside, Forssman glycosphingolipid, or several other glycosphingolipids tested, including the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and Cad. The finding that these pathogens do not bind to lactosylceramide suggests that beta 1-4-linked GalNAc, which is positioned internally in fucosylasialo-GM1 and asialo-GM1 and terminally in asialo-GM2, is required for binding. beta-N-Acetylgalactosamine itself, however, is not sufficient for binding, as the bacteria did not bind to globoside, which contains the terminal sequence GalNAc beta 1-3Gal. These data suggest that these bacteria require at least terminal or internal GalNAc beta 1-4Gal sequences unsubstituted with sialyl residues for binding. Other bacteria, including Mycoplasma pneumoniae, Streptococcus pyogenes, Salmonella species, and some E. coli, do not bind to the GalNAc beta 1-4Gal sequence. The biological relevance of these data is suggested by our finding that substantial amounts of asialo-GM1 occur in human lung tissue.

405 citations

Journal Article
TL;DR: A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health.
Abstract: A number of Lactobacillus species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have been proposed as and are used as probiotic strains, i.e. live microorganisms as food supplement in order to benefit health. The health claims range from rather vague as regulation of bowel activity and increasing of well-being to more specific, such as exerting antagonistic effect on the gastroenteric pathogens Clostridium difficile, Campylobacter jejuni, Helicobacter pylori and rotavirus, neutralising food mutagens produced in colon, shifting the immune response towards a Th2 response, and thereby alleviating allergic reactions, and lowering serum cholesterol (Tannock, 2002). Unfortunately, most publications are case reports, uncontrolled studies in humans, or reports of animal or in vitro studies. Whether or not the probiotic strains employed shall be of human origin is a matter of debate but this is not a matter of concern, as long as the strains can be shown to survive the transport in the human gastrointestinal (GI) tract and to colonise the human large intestine. This includes survival in the stressful environment of the stomach - acidic pH and bile - with induction of new genes encoding a number of stress proteins. Since the availability of antioxidants decreases rostrally in the GI tract production of antioxidants by colonic bacteria provides a beneficial effect in scavenging free radicals. LAB strains commonly produce antimicrobial substance(s) with activity against the homologous strain, but LAB strains also often produce microbicidal substances with effect against gastric and intestinal pathogens and other microbes, or compete for cell surface and mucin binding sites. This could be the mechanism behind reports that some probiotic strains inhibit or decrease translocation of bacteria from the gut to the liver. A protective effect against cancer development can be ascribed to binding of mutagens by intestinal bacteria, reduction of the enzymes beta-glucuronidase and beta-glucosidase, and deconjugation of bile acids, or merely by enhancing the immune system of the host. The latter has attracted considerable interest, and LAB have been tested in several clinical trials in allergic diseases. Characteristics ascribed to a probiotic strain are in general strain specific, and individual strains have to be tested for each property. Survival of strains during production, packing and storage of a viable cell mass has to be tested and declared.

405 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044