scispace - formally typeset
Search or ask a question
Topic

Bacteria

About: Bacteria is a research topic. Over the lifetime, 23676 publications have been published within this topic receiving 715990 citations. The topic is also known as: eubacteria.


Papers
More filters
Journal ArticleDOI
03 Nov 1977-Nature
TL;DR: Methods of aerobic degradation of aromatic compounds in the biosphere are well understood but it is only relatively recently that it has been shown how some bacteria can also degrade these substrates in the absence of molecular oxygen.
Abstract: Methods of aerobic degradation of aromatic compounds in the biosphere are well understood, but it is only relatively recently that it has been shown how some bacteria can also degrade these substrates in the absence of molecular oxygen. This occurs by photometabolism (Athiorhodaceae), nitrate respiration (Pseudomonas and Moraxella sp.) and methanogenic fermentation (a consortium) in which the benzene nucleus is first reduced and then cleaved by hydrolysis to yield aliphatic acids for cell growth. These methods may be used by microbial communities to catabolise man-made pollutants.

292 citations

Journal ArticleDOI
01 Jun 2004-Gut
TL;DR: B breve and S thermophilus release metabolites exerting an anti-TNF-α effect capable of crossing the intestinal barrier and may explain the role of some probiotics in alleviating digestive inflammation.
Abstract: Background: Probiotic bacteria have a beneficial effect on intestinal inflammation. In this study, we have examined the effect of lactic acid and commensal Gram positive (+) bacteria conditioned media (CM) on tumour necrosis factor α (TNF-α) release and the mechanisms involved. Methods: Lipopolysaccharide (LPS) induced TNF-α secretion by peripheral blood mononuclear cells or the THP-1 cell line was monitored in the presence or absence of bacteria CM obtained from two probiotic strains, Bifidobacterium breve (Bb) and Streptococcus thermophilus (St), and three commensal bacterial strains (Bifidobacterium bifidum, Ruminococcus gnavus, and unidentified Streptococcus). Bb and St bacteria CM were allowed to cross filter grown intestinal epithelial cell monolayers (HT29-19A) to assess intestinal transport of active bacterial products. These products were characterised and their effect on LPS binding to THP-1 cells and nuclear factor κB (NFκB) activation assessed. Results: Dose dependent inhibition of LPS induced TNF-α secretion was noted for both probiotic bacteria CM (64% and 71% inhibition for Bb and St, respectively) and to a lesser extent commensal bacteria CM (21–32% inhibition). Active products from Bb and St were resistant to digestive enzymes and had a molecular mass <3000 Da. Their inhibitory effect was preserved after transepithelial transport across intestinal cell monolayers, mainly in inflammatory conditions. LPS-FITC binding to THP-1 cells and NFκB activation were significantly inhibited by Bb and St CM. Conclusion: B breve and S thermophilus release metabolites exerting an anti-TNF-α effect capable of crossing the intestinal barrier. Commensal bacteria also display a TNF-α inhibitory capacity but to a lesser extent. These results underline the beneficial effect of commensal bacteria in intestinal homeostasis and may explain the role of some probiotic bacteria in alleviating digestive inflammation.

290 citations

Journal ArticleDOI
TL;DR: It is indicated that rice exudates may induce a higher chemotactic response for endophytic bacteria than for other bacterial strains present in the rice rhizosphere.
Abstract: Root exudates represent an important source of nutrients for microorganisms in the rhizosphere and seem to participate in early colonization inducing chemotactic responses of rhizospheric bacteria. We characterized the root exudates collected from rice plantlets cultured under hydroponic conditions and assessed their effects on the chemotaxis of two strains of endophytic bacteria, Corynebacterium flavescens and Bacillus pumilus, collected from the rice rhizosphere. We compared these chemotactic effects on endophytic bacteria with those on two strains of plant-growth-promoting bacteria, Azospirillum brasilense (isolated from the corn rhizosphere) and Bacillus sp. (from the rice rhizosphere). The root exudates were collected at different time intervals. The highest concentration and diversity of amino acids and carbohydrates were found during the first 2 weeks after seeding. Histidine, proline, valine, alanine, and glycine were the main amino acid residues identified during the 4 weeks of culture. The main carbohydrates identified were glucose, arabinose, mannose, galactose, and glucuronic acid. The chemotactic responses of the analyzed endophytic bacteria to root exudates were 3.9 to 5.1 times higher than those of A. brasilense and 2.2 to 2.8 times higher than Bacillus sp. Our results indicate that rice exudates may induce a higher chemotactic response for endophytic bacteria than for other bacterial strains present in the rice rhizosphere.

290 citations

Journal ArticleDOI
16 Jun 1967-Science
TL;DR: It is believed that the selectively released enzymes are confined in a region between the bacterial cell wall and the cytoplasmic membrane and may be components of active transport systems responsible for the concentrative uptake of these nutrients.
Abstract: A group of hydrolytic enzymes, including phosphatases and nucleases, is selectively released from E. coli and certain other Gram-negative bacteria by a process designated as osmotic shock. This procedure involves exposure of the cells to ethylenediaminetetraacetate (EDTA) in 0.5 molar sucrose followed by a sudden osmotic transition to cold, dilute MgCl(2). Osmotic shock also results in an alteration of the permeability barrier of the bacterial cell and a depletion of the pool of acid-soluble nucleotides, but there is no loss of viability. On being restored to growth medium, the shocked cells recover after a lag period. Formation of spheroplasts by treatment with EDTA and lysozyme leads to selective release of the same group of enzymes. We believe that the selectively released enzymes are confined in a region between the bacterial cell wall and the cytoplasmic membrane. Histochemical studies indicate such a localization. Further, the enzyme activities are measurable with intact cells, even when the substrate is a nucleotide, to which whole cells are impermeable. Another piece of evidence concerns a mutant E. coli with a defective cell wall. In contrast to normal bacteria, this organism loses one of these enzymes into the medium in the course of growth. After osmotic shock, the bacteria show reduced uptake of sulfate,betagalactosides, galactose, and certain amino acids. Furthermore, the shock treatment causes the release of nondialyzable factors able to bind sulfate, galactose, and the same amino acids. A possible interpretation of these observations is the following: the binding proteins occupy sites near the bacterial surface, and they may be components of active transport systems responsible for the concentrative uptake of these nutrients.

290 citations

Journal ArticleDOI
TL;DR: The outer membrane of Gram-negative bacteria can only slow down the influx of lipophilic inhibitors, and so these bacteria need active efflux pumps of broad specificity to survive.

289 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
93% related
Biofilm
23K papers, 906.8K citations
92% related
Virulence
35.9K papers, 1.3M citations
91% related
Plasmid
44.3K papers, 1.9M citations
90% related
Antibiotic resistance
29.1K papers, 884.5K citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20235,286
202210,729
20211,047
20201,096
20191,044