scispace - formally typeset
Topic

Bainite

About: Bainite is a(n) research topic. Over the lifetime, 9520 publication(s) have been published within this topic receiving 145305 citation(s).


Papers
More filters
Book
01 Jan 1982
TL;DR: In this article, the authors studied the effects of alloying elements in iron-carbon alloys and the formation of martensite, bainite reaction and acicular ferrite reaction.
Abstract: Iron and its interstitial solid solutions * The strengthening of iron and its alloys * The iron-carbon equilibrium diagram and plain carbon steels * The effects of alloying elements in iron-carbon alloys * Formation of martensite * The bainite reaction * Acicular ferrite * The heat treatment of steels - hardenability * The tempering of martensite * Commercial Steels: New material to include Nanostructured Steels, Steels for the Energy and Automobile Industries * The embrittlement and fracture of steels * Stainless steel * Weld microstructures * Modelling of microstructure and properties *

1,596 citations

Book
01 Jan 2001
TL;DR: The mechanism of the bainite transformation in steels is reviewed in this paper, with a summary of the early research and concluding with an assessment of the transformation in the context of the other reactions which occur as austenite is cooled to temperatures where it is no longer the stable phase.
Abstract: The mechanism of the bainite transformation in steels is reviewed, beginning with a summary of the early research and finishing with an assessment of the transformation in the context of the other reactions which occur as austenite is cooled to temperatures where it is no longer the stable phase. The review includes a detailed account of the microstructure, chemistry, and crystallography of bainitic ferrite and of the variety of carbide precipitation reactions associated with the bainite transformation. This is followed by an assessment of the thermodynamic and kinetic characteristics of the reaction and by a consideration of the reverse transformation from bainite to austenite. It is argued that there are useful mechanistic distinctions to be made between the coherent growth of ferrite initially supersaturated with carbon (bainite), coherent growth of Widmanstatten ferrite under paraequilibrium conditions, and incoherent growth of ferrite under local equilibrium or paraequilibrium conditions. The nature of the so-called acicular ferrite is also discussed.

1,101 citations

Journal ArticleDOI
TL;DR: In this paper, a model is developed to describe the endpoint of carbon partitioning between quenched martensite and retained austenite, in the absence of carbide formation.
Abstract: A model is developed to describe the endpoint of carbon partitioning between quenched martensite and retained austenite, in the absence of carbide formation. The model assumes a stationary α/γ interface, and requires a uniform chemical potential for carbon, but not iron, in the two phases, leading to a metastable equilibrium condition identified here as “constrained paraequilibrium” or CPE. The model is explained with example calculations showing the characteristics of the constrained paraequilibrium condition, and applications are discussed with respect to new microstructures and processes, including a new “quenching and partitioning,” or Q&P process, to create mixtures of carbon-depleted martensite, and carbon-enriched retained austenite. Important new implications with respect to fundamental elements of the bainite transformation are also discussed.

1,011 citations

Journal ArticleDOI
TL;DR: In this article, electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel.
Abstract: Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov–Sachs (K–S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K–S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks.

618 citations

Journal ArticleDOI
TL;DR: In this paper, a novel concept for the heat treatment of martensite, different to customary quenching and tempering, is described, which can be used to generate microstructures with martensites/austenite combinations giving attractive properties.
Abstract: A novel concept for the heat treatment of martensite, different to customary quenching and tempering, is described. This involves quenching to below the martensite-start temperature and directly ageing, either at, or above, the initial quench temperature. If competing reactions, principally carbide precipitation, are suppressed by appropriate alloying, the carbon partitions from the supersaturated martensite phase to the untransformed austenite phase, thereby increasing the stability of the residual austenite upon subsequent cooling to room temperature. This novel treatment has been termed ‘quenching and partitioning’ (Q&P), to distinguish it from quenching and tempering, and can be used to generate microstructures with martensite/austenite combinations giving attractive properties. Another approach that has been used to produce austenite-containing microstructures is by alloying to suppress carbide precipitation during the formation of bainitic structures, and interesting comparisons can be made between the two approaches. Moreover, formation of carbide-free bainite during the Q&P partitioning treatment may be a reaction competing for carbon, although this could also be used constructively as an additional stage of Q&P partitioning to form part of the final microstructure. Amongst the ferrous alloys examined so far are medium carbon bar steels and low carbon formable TRIP-assisted sheet steels.

527 citations

Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
89% related
Microstructure
148.6K papers, 2.2M citations
87% related
Deformation (engineering)
41.5K papers, 899.7K citations
86% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Welding
206.5K papers, 1.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202214
2021336
2020425
2019427
2018409
2017457