scispace - formally typeset
Search or ask a question
Topic

Bainite

About: Bainite is a research topic. Over the lifetime, 9520 publications have been published within this topic receiving 145305 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the mechanical properties of a bainitic microstructure with slender ferrite plates (20-65 nm in thickness) in a matrix of carbon-enriched retained austenite were characterized.
Abstract: The mechanical properties of a bainitic microstructure with slender ferrite plates (20-65 nm in thickness) in a matrix of carbon-enriched retained austenite were characterized. The microstructure is generated by isothermal transformation at temperatures in the range 200-300°C. A yield strength as high as 1.5 GPa and an ultimate tensile strength between 1.77 to 2.2 GPa was achieved, depending on the transformation temperature. Furthermore, the high strength is frequently accompanied by ductility (£ 30%) and respectable levels of fracture toughness (

121 citations

Journal ArticleDOI
TL;DR: A theory for the evolution of bainite as a function of time, temperature, chemical composition and austenite grain size was developed in this paper, where the model takes into account the details of the mechanism of transformation, including the fact that nucleation begins at the grain surfaces and that the growth of a sheaf occurs by repeated nucleation of small platelets.
Abstract: A theory is developed for the evolution of bainite as a function of time, temperature, chemical composition and austenite grain size. The model takes into account the details of the mechanism of transformation, including the fact that nucleation begins at the austenite grain surfaces, and that the growth of a sheaf occurs by the repeated nucleation of small platelets. Predictions made using the model are shown to compare well against published isothermal and continuous cooling transformation data.

120 citations

Patent
04 Sep 2009
TL;DR: In this article, a high-strength steel plate having superior ductility and stretch flangeability and a tensile strength of 980 MPa or higher, and having 0.17-0.73% C, 3.5-3.7% or more Si + Al, an area ratio of martensite of 10-90% with respect to the entire steel plate composition, a residual austenite amount of 5-50%.
Abstract: Disclosed is a high-strength steel plate having superior ductility and stretch flangeability and a tensile strength (TS) of 980 MPa or higher, and having 0.17-0.73% C, 3.0% or less Si, 0.5-3.0 or less Mn, 0.1% or less P, 0.07% S, 3.0% or less Al, 0.010% or less N, and 0.7% or more Si + Al, an area ratio of martensite of 10-90% with respect to the entire steel plate composition, a residual austenite amount of 5-50%, and an area ratio of bainitic ferrite in the upper bainite of 5% or less with respect to the entire steel plate composition. Twenty-five percent or more of the aforementioned martensite is tempered martensite, and the total of the area ratio of the aforementioned martensite with respect to the entire steel plate composition, the aforementioned residual austenite amount and the area ratio of the aforementioned bainitic ferrite in the upper bainite with respect to the entire steel plate composition is 65% or more. The area ratio of polygonal ferrite with respect to the entire steel plate composition is 10% or less (including 0%), and the average amount of C in the aforementioned residual austenite is 0.70% or more.

120 citations

Journal ArticleDOI
TL;DR: The microstructure of partially reversed lath martensite in 13%Cr-6%Ni steel was examined by electron backscatter diffraction, and the crystallographic character of the reversed austenite is discussed in relation to the mechanism of "austenite memory" as mentioned in this paper.
Abstract: The microstructure of partially reversed lath martensite in 13%Cr–6%Ni steel was examined by electron backscatter diffraction, and the crystallographic character of the reversed austenite is discussed in relation to the mechanism of ‘austenite memory’. Most of the reversed austenite grains had the same orientation as the original austenite matrix before martensitic transformation. However, some austenite grains had a different orientation in a twin relationship to the other major austenite grains, although all the reversed austenite grains retained a Kurdjumov–Sachs relationship to the martensite matrix. On the basis of the crystallographic relationships among the habit plane, the close packed direction of austenite and the martensite lath boundary, we suggest that the austenite variants are theoretically limited to two kinds within one packet and five kinds within one original austenite grain. In addition, we found that internal stress introduced by martensitic transformation plays an important role in determining the austenite variant: internal stress operates so that reversed austenite selects the same variant as that present in the original austenite matrix before martensitic transformation. This phenomenon is understood as the austenite memory.

120 citations


Network Information
Related Topics (5)
Alloy
171.8K papers, 1.7M citations
89% related
Microstructure
148.6K papers, 2.2M citations
87% related
Deformation (engineering)
41.5K papers, 899.7K citations
86% related
Grain boundary
70.1K papers, 1.5M citations
84% related
Welding
206.5K papers, 1.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023211
2022417
2021337
2020425
2019427
2018409