scispace - formally typeset
Search or ask a question
Topic

Ballistic conduction

About: Ballistic conduction is a research topic. Over the lifetime, 3813 publications have been published within this topic receiving 114123 citations.


Papers
More filters
Journal ArticleDOI
Ali Javey1, Jing Guo2, Qian Wang1, Mark Lundstrom2, Hongjie Dai1 
07 Aug 2003-Nature
TL;DR: It is shown that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotube, greatly reduces or eliminates the barriers for transport through the valence band of nanot tubes.
Abstract: A common feature of the single-walled carbon-nanotube field-effect transistors fabricated to date has been the presence of a Schottky barrier at the nanotube–metal junctions1,2,3. These energy barriers severely limit transistor conductance in the ‘ON’ state, and reduce the current delivery capability—a key determinant of device performance. Here we show that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotubes, greatly reduces or eliminates the barriers for transport through the valence band of nanotubes. In situ modification of the electrode work function by hydrogen is carried out to shed light on the nature of the contacts. With Pd contacts, the ‘ON’ states of semiconducting nanotubes can behave like ohmically contacted ballistic metallic tubes, exhibiting room-temperature conductance near the ballistic transport limit of 4e2/h (refs 4–6), high current-carrying capability (∼25 µA per tube), and Fabry–Perot interferences5 at low temperatures. Under high voltage operation, the current saturation appears to be set by backscattering of the charge carriers by optical phonons. High-performance ballistic nanotube field-effect transistors with zero or slightly negative Schottky barriers are thus realized.

3,126 citations

Journal ArticleDOI
TL;DR: This work shows that the fluctuations are significantly reduced in suspended graphene samples and reports low-temperature mobility approaching 200,000 cm2 V-1 s-1 for carrier densities below 5 x 109 cm-2, which cannot be attained in semiconductors or non-suspended graphene.
Abstract: The discovery of graphene1,2 raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties3,4,5,6 of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching 200,000 cm2 V−1 s−1 for carrier densities below 5 × 109 cm−2. Such values cannot be attained in semiconductors or non-suspended graphene. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures. At higher temperatures, above 100 K, we observe the onset of thermally induced long-range scattering. The novel electronic properties of graphene can be compromised when it is supported on an insulating substrate. However, suspended graphene samples can display low-temperature mobility values that cannot be attained in semiconductors or non-suspended graphene, and the conductivity approaches ballistic values at liquid-helium temperatures.

2,977 citations

Journal ArticleDOI
01 Nov 2013-Science
TL;DR: In graphene heterostructures, the edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials, and enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-tem temperature mobility comparable to the theoretical phonon-scattering limit.
Abstract: Heterostructures based on layering of two-dimensional (2D) materials such as graphene and hexagonal boron nitride represent a new class of electronic devices. Realizing this potential, however, depends critically on the ability to make high-quality electrical contact. Here, we report a contact geometry in which we metalize only the 1D edge of a 2D graphene layer. In addition to outperforming conventional surface contacts, the edge-contact geometry allows a complete separation of the layer assembly and contact metallization processes. In graphene heterostructures, this enables high electronic performance, including low-temperature ballistic transport over distances longer than 15 micrometers, and room-temperature mobility comparable to the theoretical phonon-scattering limit. The edge-contact geometry provides new design possibilities for multilayered structures of complimentary 2D materials.

2,606 citations

Journal ArticleDOI
TL;DR: The first expenmental study of the resistance of ballistic pomt contacts m the 2DEG of high-mobihty GaAs-AlGaAs heterostructures is reported.
Abstract: As a result of the high mobihty attamable in the twodimensional electron gas (2DEG) in GaAs-AlGaAs heterostructures it is now becoming feasible to study ballistic transport in small devices '"6 In metals ideal tools for such studies are constnctions havng a width W and length L much smaller than the mean free path le These are known as Sharvin pomt contacts 7 Because of the ballistic transport through these constnctions, the resistance is determmed by the pomt-contact geometry only Point contacts have been used extensively for the study of elastic and melastic electron scattermg With use of biased pomt contacts, electrons can be mjected mto metals at energies above the Fermi level This allows the study of the energy dependence of the scattermg mechamsms 8 With the use of a geometry containmg two pomt contacts, with Separation smaller than le, electrons mjected by a pomt contact can be focused mto the other contact, by the application of a magnetic field This technique (transverse electron focusmg) has been applied to the detailed study of Fermi surfaces 9 In this Letter we report the first expenmental study of the resistance of ballistic pomt contacts m the 2DEG of high-mobihty GaAs-AlGaAs heterostructures The smgle-pomt contacts discussed m this paper are part of a double-pomt-contact device The results of transverse electron focusmg m these devices will be published elsewhere '° The pomt contacts are dehned by electrostatic depletion of the 2DEG underneath a gate This method, which has been used by several authors for the study of l D conduction,'1 offers the possibility to control the width of the pomt contact by the gate voltage Control of the width is not feasible in metal pomt contacts

2,508 citations

Journal ArticleDOI
TL;DR: The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process, and field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene.
Abstract: The electronic properties of graphene, such as high charge carrier concentrations and mobilities, make it a promising candidate for next-generation nanoelectronic devices. In particular, electrons and holes can undergo ballistic transport on the sub-micrometre scale in graphene and do not suffer from the scale limitations of current MOSFET technologies. However, it is still difficult to produce single-layer samples of graphene and bulk processing has not yet been achieved, despite strenuous efforts to develop a scalable production method. Here, we report a versatile solution-based process for the large-scale production of single-layer chemically converted graphene over the entire area of a silicon/SiO(2) wafer. By dispersing graphite oxide paper in pure hydrazine we were able to remove oxygen functionalities and restore the planar geometry of the single sheets. The chemically converted graphene sheets that were produced have the largest area reported to date (up to 20 x 40 microm), making them far easier to process. Field-effect devices have been fabricated by conventional photolithography, displaying currents that are three orders of magnitude higher than previously reported for chemically produced graphene. The size of these sheets enables a wide range of characterization techniques, including optical microscopy, scanning electron microscopy and atomic force microscopy, to be performed on the same specimen.

2,011 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Quantum dot
76.7K papers, 1.9M citations
89% related
Magnetization
107.8K papers, 1.9M citations
89% related
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202263
202161
202072
201991
201888