scispace - formally typeset
Search or ask a question

Showing papers on "Band gap published in 2016"


Journal ArticleDOI
08 Jan 2016-Science
TL;DR: It is shown that using cesium ions along with formamidinium cations in lead bromide–iodide cells improved thermal and photostability and lead to high efficiency in single and tandem cells.
Abstract: Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability. Here we present a highly crystalline and compositionally photostable material, [HC(NH2)2](0.83)Cs(0.17)Pb(I(0.6)Br(0.4))3, with an optical band gap of ~1.74 eV, and we fabricated perovskite cells that reached open-circuit voltages of 1.2 volts and power conversion efficiency of over 17% on small areas and 14.7% on 0.715 cm(2) cells. By combining these perovskite cells with a 19%-efficient silicon cell, we demonstrated the feasibility of achieving >25%-efficient four-terminal tandem cells.

2,412 citations


Journal ArticleDOI
18 Nov 2016-Science
TL;DR: This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.
Abstract: The ready processability of organic-inorganic perovskite materials for solar cells should enable the fabrication of tandem solar cells, in which the top layer is tuned to absorb shorter wavelengths and the lower layer to absorb the remaining longer-wavelength light. The difficulty in making an all-perovskite cell is finding a material that absorbs the red end of the spectrum. Eperon et al. developed an infrared-absorbing mixed tin-lead material that can deliver 14.8% efficiency on its own and 20.3% efficiency in a four-terminal tandem cell. Science , this issue p. [861][1] [1]: /lookup/doi/10.1126/science.aaf9717

1,089 citations


Journal ArticleDOI
07 Oct 2016-Science
TL;DR: Molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode are demonstrated, which exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106.
Abstract: Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106 Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.

1,078 citations


Journal ArticleDOI
TL;DR: The double perovskites Cs2AgBiBr6 and Cs 2AgBiCl6 have been synthesized from both solid state and solution routes, and X-ray diffraction measurements reveal band gaps of 2.19 eV and 2.77 eV as discussed by the authors.
Abstract: The double perovskites Cs2AgBiBr6 and Cs2AgBiCl6 have been synthesized from both solid state and solution routes. X-ray diffraction measurements show that both compounds adopt the cubic double perovskite structure, space group Fm3m, with lattice parameters of 11.2711(1) A (X = Br) and 10.7774(2) A (X = Cl). Diffuse reflectance measurements reveal band gaps of 2.19 eV (X = Br) and 2.77 eV (X = Cl) that are slightly smaller than the band gaps of the analogous lead halide perovskites, 2.26 eV for CH3NH3PbBr3 and 3.00 eV for CH3NH3PbCl3. Band structure calculations indicate that the interaction between the Ag 4d-orbitals and the 3p/4p-orbitals of the halide ion modifies the valence band leading to an indirect band gap. Both compounds are stable when exposed to air, but Cs2AgBiBr6 degrades over a period of weeks when exposed to both ambient air and light. These results show that halide double perovskite semiconductors are potentially an environmentally friendly alternative to the lead halide perovskite semico...

958 citations


Journal ArticleDOI
TL;DR: In this article, the authors resolve the long-debated issue of the nature and value of the bandgap in hexagonal boron nitride by providing evidence for an indirect bandgap at 5.955 eV and an exciton binding energy of about 130 meV.
Abstract: Scientists resolve the long-debated issue of the nature and value of the bandgap in hexagonal boron nitride by providing evidence for an indirect bandgap at 5.955 eV and an exciton binding energy of about 130 meV by means of optical spectroscopy.

908 citations


Journal ArticleDOI
TL;DR: A broad range of band gaps and high mobilities of a 2D semiconductor family, composed of monolayer of Group 15 elements (phosphorene, arsenene, antimonene, bismuthene).
Abstract: Optoelectronic applications require materials both responsive to objective photons and able to transfer carriers, so new two-dimensional (2D) semiconductors with appropriate band gaps and high mobilities are highly desired. A broad range of band gaps and high mobilities of a 2D semiconductor family, composed of monolayer of Group 15 elements (phosphorene, arsenene, antimonene, bismuthene) is presented. The calculated binding energies and phonon band dispersions of 2D Group 15 allotropes exhibit thermodynamic stability. The energy band gaps of 2D semiconducting Group 15 monolayers cover a wide range from 0.36 to 2.62 eV, which are crucial for broadband photoresponse. Significantly, phosphorene, arsenene, and bismuthene possess carrier mobilities as high as several thousand cm2 V−1 s−1. Combining such broad band gaps and superior carrier mobilities, 2D Group 15 monolayers are promising candidates for nanoelectronics and optoelectronics.

783 citations


Journal ArticleDOI
TL;DR: The blue fluorescent CsPbCl3 NPLs represent a new member of the scarcely populated group of blue-emitting colloidal nanocrystals and the exciton dynamics were found to be independent of the extent of 2D confinement in these platelets, and this was supported by band structure calculations.
Abstract: We report a colloidal synthesis approach to CsPbBr3 nanoplatelets (NPLs). The nucleation and growth of the platelets, which takes place at room temperature, is triggered by the injection of acetone in a mixture of precursors that would remain unreactive otherwise. The low growth temperature enables the control of the plate thickness, which can be precisely tuned from 3 to 5 monolayers. The strong two-dimensional confinement of the carriers at such small vertical sizes is responsible for a narrow PL, strong excitonic absorption, and a blue shift of the optical band gap by more than 0.47 eV compared to that of bulk CsPbBr3. We also show that the composition of the NPLs can be varied all the way to CsPbBr3 or CsPbI3 by anion exchange, with preservation of the size and shape of the starting particles. The blue fluorescent CsPbCl3 NPLs represent a new member of the scarcely populated group of blue-emitting colloidal nanocrystals. The exciton dynamics were found to be independent of the extent of 2D confinement...

714 citations


Journal ArticleDOI
TL;DR: By elucidating the role of relative bond strengths within the precursor and the host lattice, this work develops an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I).
Abstract: Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II–VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8–3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the cor...

681 citations


Journal ArticleDOI
TL;DR: An overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance is provided.
Abstract: The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance.

601 citations


Journal ArticleDOI
TL;DR: In this article, the authors explored the perovskites in a compositional space and derived the absorption and the emission behavior as well as the crystallographic properties of the pervskites.
Abstract: Lead halide perovskites have attracted considerable interest as photoabsorbers in PV-applications over the last few years. The most studied perovskite material achieving high photovoltaic performance has been methyl ammonium lead iodide, CH3NH3PbI3. Recently the highest solar cell efficiencies have, however, been achieved with mixed perovskites where iodide and methyl ammonium partially have been replaced by bromide and formamidinium. In this work, the mixed perovskites were explored in a systematic way by manufacturing devices where both iodide and methyl ammonium were gradually replaced by bromide and formamidinium. The absorption and the emission behavior as well as the crystallographic properties were explored for the perovskites in this compositional space. The band gaps as well as the crystallographic structures were extracted. Small changes in the composition of the perovskite were found to have a large impact on the properties of the materials and the device performance. In the investigated compositional space, cell efficiencies, for example, vary from a few percent up to 20.7%. From the perspective of applications, exchanging iodide with bromide is especially interesting as it allows tuning of the band gap from 1.5 to 2.3 eV. This is highly beneficial for tandem applications, and an empirical expression for the band gap as a function of composition was determined. Exchanging a small amount of iodide with bromide is found to be highly beneficial, whereas a larger amount of bromide in the perovskite was found to cause intense sub band gap photoemission with detrimental results for the device performance. This could be caused by the formation of a small amount of an iodide rich phase with a lower band gap, even though such a phase was not observed in diffraction experiments. This shows that stabilizing the mixed perovskites will be an important task in order to get the bromide rich perovskites, which has a higher band gap, to reach the same high performance obtained with the best compositions.

576 citations


Posted Content
TL;DR: It is shown that this hitherto unknown family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses.
Abstract: Lead-based halide perovskites are emerging as the most promising class of materials for next generation optoelectronics. However, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double-perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, we perform structural refinement using single-crystal X-ray diffraction, and we characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm-3m space group, and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-Vis and PL measurements we obtain an indirect gap of 2.2 eV. The new compound is very stable under ambient conditions.

Journal ArticleDOI
TL;DR: In this article, the binding energy of the exciton (R*) and its reduced effective mass (μ) were investigated in the context of perovskite materials, where the excitonic states were fit as a hydrogenic atom in magnetic field and the Landau levels for free carriers to give R* and μ.
Abstract: The family of organic–inorganic halide perovskite materials has generated tremendous interest in the field of photovoltaics due to their high power conversion efficiencies. There has been intensive development of cells based on the archetypal methylammonium (MA) and recently introduced formamidinium (FA) materials, however, there is still considerable controversy over their fundamental electronic properties. Two of the most important parameters are the binding energy of the exciton (R*) and its reduced effective mass μ. Here we present extensive magneto optical studies of Cl assisted grown MAPbI3 as well as MAPbBr3 and the FA based materials FAPbI3 and FAPbBr3. We fit the excitonic states as a hydrogenic atom in magnetic field and the Landau levels for free carriers to give R* and μ. The values of the exciton binding energy are in the range 14–25 meV in the low temperature phase and fall considerably at higher temperatures for the tri-iodides, consistent with free carrier behaviour in all devices made from these materials. Both R* and μ increase approximately proportionally to the band gap, and the mass values, 0.09–0.117m0, are consistent with a simple k.p perturbation approach to the band structure which can be generalized to predict values for the effective mass and binding energy for other members of this perovskite family of materials.

Posted Content
TL;DR: In this article, the authors proposed a new class of halide double perovskites, where the B$^{3+}$ and B$€ 2+} cations are In$^{2+} and Ag$^{+}, respectively.
Abstract: A$_2$BB$^\prime$X$_6$ halide double perovskites based on bismuth and silver have recently been proposed as potential environmentally-friendly alternatives to lead-based hybrid halide perovskites. In particular, Cs$_2$BiAgX$_6$ (X = Cl, Br) have been synthesized and found to exhibit band gaps in the visible range. However, the band gaps of these compounds are indirect, which is not ideal for applications in thin film photovoltaics. Here, we propose a new class of halide double perovskites, where the B$^{3+}$ and B$^{+}$ cations are In$^{3+}$ and Ag$^{+}$, respectively. Our first-principles calculations indicate that the hypothetical compounds Cs$_2$InAgX$_6$ (X = Cl, Br, I) should exhibit direct band gaps between the visible (I) and the ultraviolet (Cl). Based on these predictions, we attempt to synthesize Cs$_2$InAgCl$_6$ and Cs$_2$InAgBr$_6$, and we succeed to form the hitherto unknown double perovskite Cs$_2$InAgCl$_6$. X-ray diffraction yields a double perovskite structure with space group $Fm\overline{3}m$. The measured band gap is 3.3 eV, and the compound is found to be photosensitive and turns reversibly from white to orange under ultraviolet illumination. We also perform an empirical analysis of the stability of Cs$_2$InAgX$_6$ and their mixed halides based on Goldschmidt's rules, and we find that it should also be possible to form Cs$_2$InAg(Cl$_{1-x}$Br$_{x}$)$_6$ for $x<1$. The synthesis of mixed halides will open the way to the development of lead-free double perovskites with direct and tunable band gaps.

Journal ArticleDOI
TL;DR: To illustrate the applicability of this technique to realize vdW heterostructures in which the functionality is critically dependent on rotational alignment, this work demonstrates resonant tunneling double bilayer graphene heterostructure separated by hexagonal boron-nitride dielectric.
Abstract: We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moire pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructur...

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the thermodynamic origin and consequences of light-induced phase segregation observed in mixed-halide perovskites and propose that modifying the composition and lattice structure, increasing compositional uniformity, and reducing defect concentrations could significantly improve stability.
Abstract: In the few short years since the inception of single-junction perovskite solar cells, their efficiencies have skyrocketed. Perovskite absorbers have at least as much to offer tandem solar cells as they do for single-junction cells due in large part to their tunable band gaps. However, modifying the perovskite band structure via halide substitution, the method that has been most effective at tuning band gaps, leads to instabilities in the material for some compositions. Here, we discuss the thermodynamic origin and consequences of light-induced phase segregation observed in mixed-halide perovskites. We propose that, as the phase segregation is rooted in halide migration and possibly affected by lattice strain, modifying the perovskite composition and lattice structure, increasing compositional uniformity, and reducing defect concentrations could significantly improve stability.

Journal ArticleDOI
TL;DR: From the complementary theoretical and experimental analysis, this work is able to assign the indirect character of the band gaps and obtain both experimental and theoretical band gaps of these novel semiconductors that are in close agreement.
Abstract: The recent discovery of lead-free halide double perovskites with band gaps in the visible represents an important step forward in the design of environmentally friendly perovskite solar cells. Within this new family of semiconductors, Cs2BiAgCl6 and Cs2BiAgBr6 are stable compounds crystallizing in the elpasolite structure. Following the recent computational discovery and experimental synthesis of these compounds, a detailed investigation of their electronic properties is warranted in order to establish their potential as optoelectronic materials. In this work, we perform many-body perturbation theory calculations and obtain high accuracy band gaps for both compounds. In addition, we report on the synthesis of Cs2BiAgBr6 single crystals, which are stable in ambient conditions. From our complementary theoretical and experimental analysis, we are able to assign the indirect character of the band gaps and obtain both experimental and theoretical band gaps of these novel semiconductors that are in close agreement.

Journal ArticleDOI
TL;DR: In this article, defect-modified g-C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported.
Abstract: Graphitic carbon nitride (g-C3N4) has recently emerged as an attractive photocatalyst for solar energy conversion. However, the photocatalytic activities of g-C3N4 remain moderate because of the insufficient solar-light absorption and the fast electron–hole recombination. Here, defect-modified g-C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported. More importantly, cyano terminal CN groups, acting as electron acceptors, are introduced into the DCN sheet edge, which endows the DCN with both n- and p-type conductivities, consequently giving rise to the generation of p–n homojunctions. This homojunction structure is demonstrated to be highly efficient in charge transfer and separation, and results in a fivefold enhanced photocatalytic H2 evolution activity. The findings deepen the understanding on the defect-related issues of g-C3N4-based materials. Additionally, the ability to build homojunction structures by the defect-induced self-functionalization presents a promising strategy to realize precise band engineering of g-C3N4 and related polymer semiconductors for more efficient solar energy conversion applications.

Journal ArticleDOI
TL;DR: In this article, the authors show how a new quantum spin Hall (QSH) paradigm based on substrate-supported atomic monolayers of a high-Z element can be achieved by making use of a new QSH paradigm.
Abstract: Quantum spin Hall (QSH) materials promise revolutionary device applications based on dissipationless propagation of spin currents. They are two-dimensional (2D) representatives of the family of topological insulators, which exhibit conduction channels at their edges inherently protected against scattering. Initially predicted for graphene, and eventually realized in HgTe quantum wells, in the QSH systems realized so far, the decisive bottleneck preventing applications is the small bulk energy gap of less than 30 meV, requiring cryogenic operation temperatures in order to suppress detrimental bulk contributions to the edge conductance. Room-temperature functionalities, however, require much larger gaps. Here we show how this can be achieved by making use of a new QSH paradigm based on substrate-supported atomic monolayers of a high-Z element. Experimentally, the material is synthesized as honeycomb lattice of bismuth atoms, forming "bismuthene", on top of the wide-gap substrate SiC(0001). Consistent with the theoretical expectations, the spectroscopic signatures in experiment display a huge gap of ~0.8 eV in bismuthene, as well as conductive edge states. The analysis of the layer-substrate orbitals arrives at a QSH phase, whose topological gap - as a hallmark mechanism - is driven directly by the atomic spin-orbit coupling (SOC). Our results demonstrate how strained artificial lattices of heavy atoms, in contact with an insulating substrate, can be utilized to evoke a novel topological wide-gap scenario, where the chemical potential is located well within the global system gap, ensuring pure edge state conductance. We anticipate future experiments on topological signatures, such as transport measurements that probe the QSH effect via quantized universal conductance, notably at room temperature.

Journal ArticleDOI
TL;DR: This review provides a broad analysis of SERS with dielectrics, encompassing different optical phenomena at the basis of the Raman scattering enhancement and introducing future challenges for light harvesting, vibrational spectroscopy, imaging, and sensing.
Abstract: Dielectrics represent a new frontier for surface-enhanced Raman scattering. They can serve as either a complement or an alternative to conventional, metal-based SERS, offering key advantages in terms of low invasiveness, reproducibility, versatility, and recyclability. In comparison to metals, dielectric systems and, in particular, semiconductors are characterized by a much greater variety of parameters and properties that can be tailored to achieve enhanced Raman scattering or related effects. Light-trapping and subwavelength-focusing capabilities, morphology-dependent resonances, control of band gap and stoichiometry, size-dependent plasmons and excitons, and charge transfer from semiconductors to molecules and vice versa are a few examples of the manifold opportunities associated with the use of semiconductors as SERS-active materials. This review provides a broad analysis of SERS with dielectrics, encompassing different optical phenomena at the basis of the Raman scattering enhancement and introducing...

Journal ArticleDOI
TL;DR: In this article, the electronic structures, optical properties and effective masses of charge carriers of N-, C- and S-doped ZnO were investigated by first-principle density functional theory calculation.
Abstract: In general, N-, C- and S-doped ZnO exhibit much higher phototcatalytic activity than the pure ZnO. However, the essential factors and underlying mechanism regarding the enhancement of photocatalytic activity are still unclear. In this work, the electronic structures, optical properties and effective masses of charge carriers are investigated by first-principle density functional theory calculation. Due to the nature of p-type doping, N and C doping can generate vacant states above the Fermi level and shift the conduction band into lower energy region, resulting in narrowing of band gap. Thus, N- and C-doped ZnO demonstrate much stronger light absorption in both visible and ultraviolet region. In contrast, because of the absence of vacant states, only limited enhancement of light absorption is observed for S-doped ZnO whose improved photocatalytic performance can only be attributed to the direct reduction of band gap. The calculation of the effective masses show that ZnO typically possess light electrons and heavy holes, confirming its intrinsic character of n-type semiconductor, while N, C and S doping can generally render electrons lighter and holes heavier, resulting in slower recombination rate of photogenerated electron–hole pairs. Noticeably, C doping can discourage such recombination to the greatest extent and separate electron–hole pairs most efficiently compared with N and S doping, serving as a potentially promising pathway to increase the quantum efficiency of ZnO-based photocatalysts. This work will provide some new insights into the understanding of doping effect over the enhancement of photocatalytic activity of N-, C- and S-doped ZnO.

Journal ArticleDOI
TL;DR: In this article, a review examines the known deep UV NLO materials with respect to their crystal structure, band gap, SHG efficiency, laser damage threshold, and birefringence.
Abstract: Deep ultraviolet (absorption edge 6.2 eV) nonlinear optical (NLO) materials are of current interest owing to their technological applications and materials design challenges. Technologically, the materials are used in laser systems, atto-second pulse generation, semiconductor manufacturing, and photolithography. Designing and synthesizing a deep UV NLO material requires crystallographic non-centrosymmetry, a wide UV transparency range, a large second-harmonic generating coefficient (dij > 0.39 pm/V), moderate birefringence (Δn ∼ 0.07), chemical stability and resistance to laser damage, and ease in the growth of large high-quality single crystals. This review examines the known deep UV NLO materials with respect to their crystal structure, band gap, SHG efficiency, laser damage threshold, and birefringence. Finally, future directions with respect to new deep UV NLO materials are discussed.

Journal ArticleDOI
TL;DR: The continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes is demonstrated by as much as 500 meV by applying very large biaxial strains and evidence for the strain tuning of higher level optical transitions is reported.
Abstract: We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Gruneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

Journal ArticleDOI
TL;DR: Bismuth-based semiconductors have been widely applied in several areas including the generation of H2 by splitting water, decomposition of organic and inorganic pollutants in both wastewater and polluted air, and organic synthesis through harvesting the energy of light as discussed by the authors.
Abstract: Bismuth-based semiconductors are a unique and promising group of recently developed advanced photocatalytic materials. They have been widely applied in several areas including the generation of H2 by splitting water, decomposition of organic and inorganic pollutants in both wastewater and polluted air, and organic synthesis through harvesting the energy of light. The electronic structure of bismuth-based semiconductors confers them with a suitable band gap for visible-light response and a well-dispersed valence band composed of hybrid orbitals of Bi6s and O2p, making them a promising candidate when compared to other metal oxide semiconductors. In addition, they are simple to operate and prepare with controlled morphologies, making them attractive as potential photocatalysts. The purposes of this review are (1) summarization of advanced bismuth-based compounds that have been applied to date, (2) statement of challenges facing this material and possible approaches to overcome them, and (3) suggestions for future work.

Journal ArticleDOI
TL;DR: In this article, a dual-phase all-inorganic composite CsPbBr3-CsPb2Br5 was developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m-2, with current density (CE) of ≈8.98 cd A-1 and external quantum efficiency (EQE) of 2.21%, respectively.
Abstract: A dual-phase all-inorganic composite CsPbBr3-CsPb2Br5 is developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m–2, with current density (CE) of ≈8.98 cd A–1 and external quantum efficiency (EQE) of ≈2.21%, respectively. The parasite of secondary phase CsPb2Br5 nanoparticles on the cubic CsPbBr3 nanocrystals could enhance the current efficiency by reducing diffusion length of excitons on one side, and decrease the trap density in the band gap on the other side. In addition, the introduction of CsPb2Br5 nanoparticles could increase the ionic conductivity by reducing the barrier against the electronic and ionic transport, and improve emission lifetime by decreasing nonradiative energy transfer to the trap states via controlling the trap density. The dual-phase all-inorganic CsPbBr3-CsPb2Br5 composite nanocrystals present a new route of perovskite material for advanced light emission applications.

Journal ArticleDOI
TL;DR: The calculations indicate that the orientation of [CH3NH3](+) cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties.
Abstract: The optical constants of methylammonium lead halide single crystals CH3NH3PbX3 (X = I, Br, Cl) are interpreted with high level ab initio calculations using the relativistic quasiparticle self-consistent GW approximation (QSGW). Good agreement between the optical constants derived from QSGW and those obtained from spectroscopic ellipsometry enables the assignment of the spectral features to their respective inter-band transitions. We show that the transition from the highest valence band (VB) to the lowest conduction band (CB) is responsible for almost all the optical response of MAPbI3 between 1.2 and 5.5 eV (with minor contributions from the second highest VB and the second lowest CB). The calculations indicate that the orientation of [CH3NH3]+ cations has a significant influence on the position of the bandgap suggesting that collective orientation of the organic moieties could result in significant local variations of the optical properties. The optical constants and energy band diagram of CH3NH3PbI3 are then used to simulate the contributions from different optical transitions to a typical transient absorption spectrum (TAS).

Journal ArticleDOI
23 Feb 2016-ACS Nano
TL;DR: The monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Abstract: 2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3–3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

Journal ArticleDOI
TL;DR: It is demonstrated that the combination of Ag(I) and Bi(III) leads to the wide indirect band gaps with large carrier effective masses owing to a mismatch in angular momentum of the frontier atomic orbitals, which can be overcome by replacing Ag with In or Tl; however, the resulting compounds are predicted to be unstable thermodynamically.
Abstract: The methylammonium lead halides have become champion photoactive semiconductors for solar cell applications; however, issues still remain with respect to chemical instability and potential toxicity. Recently, the Cs2AgBiX6 (X = Cl, Br) double perovskite family has been synthesized and investigated as stable nontoxic replacements. We probe the chemical bonding, physical properties, and cation anti-site disorder of Cs2AgBiX6 and related compounds from first-principles. We demonstrate that the combination of Ag(I) and Bi(III) leads to the wide indirect band gaps with large carrier effective masses owing to a mismatch in angular momentum of the frontier atomic orbitals. The spectroscopically limited photovoltaic conversion efficiency is less than 10% for X = Cl or Br. This limitation can be overcome by replacing Ag with In or Tl; however, the resulting compounds are predicted to be unstable thermodynamically. The search for nontoxic bismuth perovskites must expand beyond the Cs2AgBiX6 motif.

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the direct synthesis and ion exchange-based reactions leading to hybrid organic and all-inorganic lead halide perovskite nanocrystals is presented, and optical properties related to quantum confinement effects, single particle emission and lasing are considered.
Abstract: Lead halide perovskite nanocrystals (NCs) are receiving a lot of attention nowadays, due to their exceptionally high photoluminescence quantum yields reaching almost 100% and tunability of their optical band gap over the entire visible spectral range by modifying composition or dimensionality/size. We review recent developments in the direct synthesis and ion exchange-based reactions, leading to hybrid organic–inorganic (CH3NH3PbX3) and all-inorganic (CsPbX3) lead halide (X=Cl, Br, I) perovskite NCs, and consider their optical properties related to quantum confinement effects, single emission spectroscopy and lasing. We summarize recent developments on perovskite NCs employed as an active material in several applications such as light-emitting devices, solar cells and photodetectors, and provide a critical outlook into the existing and future challenges. Although research into perovskite nanocrystals is still in its infancy, they are expected to be major players in future nanoscience. Lead halide perovskite nanocrystals are attracting much interest because their quantum yields for photoluminescence are approaching 100% and their optical band gap can be tuned over the entire visible wavelength region – properties that make them promising for use in lasers, light-emitting diodes (LEDs) and solar cells. Andrey Rogach of City University of Hong Kong and co-workers review the latest developments in the synthesis (of both hybrid organic-inorganic and all-inorganic nanocrystals), optical properties (quantum confinement effects, single particle emission and lasing studies) and applications (LEDs, solar cells and photodiodes) of these materials. They outline some of the many remaining challenges, but state their confidence that these should soon be overcome. This review summarizes recent developments in the direct synthesis and ion exchange-based reactions leading to hybrid organic–inorganic and all-inorganic lead halide perovskite nanocrystals. Optical properties related to quantum confinement effects, single emission spectroscopy and lasing are considered. Perovskite nanocrystals have been employed as an active material in several applications such as light-emitting devices, solar cells and photodetectors.

Journal ArticleDOI
TL;DR: Screened hybrids are a better option for the black box prediction of band gaps by including a larger portion of Hartree-Fock exchange in its short-range by improving its accuracy for large band gap materials.
Abstract: We compare the ability of four popular hybrid density functionals (B3LYP, B3PW91, HSE, and PBE0) for predicting band gaps of semiconductors and insulators over a large benchmark set using a consistent methodology. We observe no significant statistical difference in their overall performance, although the screened hybrid HSE is more accurate for typical semiconductors. HSE can improve its accuracy for large band gap materials—without affecting that of semiconductors—by including a larger portion of Hartree–Fock exchange in its short-range. Given that screened hybrids are computationally much less expensive than their global counterparts, we conclude that they are a better option for the black box prediction of band gaps.

Journal ArticleDOI
TL;DR: Valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites are reported, revealing an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS in these compounds.
Abstract: We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic sta...