scispace - formally typeset
Search or ask a question

Showing papers on "Band gap published in 2018"


Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: It is shown experimentally that when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling, and these flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons.
Abstract: A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moire pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moire pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

3,005 citations


Journal Article
TL;DR: In this article, the effects of the twist angle between different layers in a van der Waals heterostructure have been investigated and it was shown that when this angle is close to the magic angle, the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling.
Abstract: A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moire pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moire pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

1,961 citations


Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations



Journal ArticleDOI
10 Sep 2018
TL;DR: In this paper, the properties of transition metal dichalcogenide semiconductors have been examined in depth, including bright, dark, localized and interlayer excitons.
Abstract: Two-dimensional group-VI transition metal dichalcogenide semiconductors, such as MoS2, WSe2, and others, exhibit strong light-matter coupling and possess direct band gaps in the infrared and visible spectral regimes, making them potentially interesting candidates for various applications in optics and optoelectronics. Here, we review their optical and optoelectronic properties with emphasis on exciton physics and devices. As excitons are tightly bound in these materials and dominate the optical response even at room-temperature, their properties are examined in depth in the first part of this article. We discuss the remarkably versatile excitonic landscape, including bright, dark, localized and interlayer excitons. In the second part, we provide an overview on the progress in optoelectronic device applications, such as electrically driven light emitters, photovoltaic solar cells, photodetectors, and opto-valleytronic devices, again bearing in mind the prominent role of excitonic effects. We conclude with a brief discussion on challenges that remain to be addressed to exploit the full potential of transition metal dichalcogenide semiconductors in possible exciton-based applications.

465 citations


Journal ArticleDOI
TL;DR: The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements.
Abstract: Vacancy-rich layered materials with good electron transfer property are of great interesting. Herein, full spectrum responsive vacancy-rich monolayer BiO2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x are responsible for the enhanced photon responsibility and photo-absorption, which was confirmed by UV-vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2-x, monolayer BiO2-x exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible and near-infrared light (NIR) irradiation attributed to the vacancy associates VBi-O‴ as confirmed by the positron annihilation spectra. The presence of VBi-O‴ defects in monolayer BiO2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient ultraviolet (UV), visible and NIR light responsive photocatalysts.

350 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the possibility of MoSSe as an efficient water-splitting photocatalyst and the effects of isotropic and uniaxial strains by the first-principles calculations.
Abstract: For realizing efficient solar to hydrogen energy conversion based on photocatalytic technology, it is important to explore a photocatalyst with wide-range solar absorption and high electron–hole separation efficiency. With a built-in electric field, the recently synthesized Janus MoSSe is intrinsically beneficial for promoting the separation of photo-generated electrons and holes. Thus in this work, we examine the possibility of MoSSe as an efficient water-splitting photocatalyst and the effects of isotropic and uniaxial strains by the first-principles calculations. It is interesting to find that MoSSe exhibits pronounced visible-light absorption efficiency, proper valence and conduction band positions for initializing the redox reactions of H2O, and high carrier mobilities. Moreover, the band gap of MoSSe is decreased and the direct–indirect band gap transition occurs upon tensile strain, which can not only extend the light absorption range, but also reduce the recombination of photo-generated carriers. Furthermore, H2O molecules adsorb more strongly on the MoSSe monolayer surface than on the MoS2 surface, which is also beneficial for the surface water-splitting reactions. These insights provide eloquent evidence that the Janus MoSSe monolayer is potentially an efficient and wide solar-spectrum water-splitting photocatalyst.

346 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the performance and photostability of metal halide perovskites across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions.
Abstract: Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation caused by halide segregation. We investigate solar cell performance and photostability across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions and show that using more Cs at the A-site rather than more Br at the X-site to raise band gap is more ideal as it improves both VOC and photostability. We develop band gap maps and design criteria for the selection of perovskite compositions within the CsxFA1–xPb(BryI1–y)3, space. With this, we identify perovskites with tandem-relevant band gaps of 1.68 and 1.75 eV that demonstrate high device efficiencies of 17.4 and 16.3%, respectively, and significantly improved photostability compared to that of the higher Br-co...

310 citations


Journal ArticleDOI
TL;DR: Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption.
Abstract: Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO2 reduction have gained little attention. In this work, phosphorus-doped g-C3N4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH2PO2·H2O). The phosphine gas generated from the thermal decomposition of NaH2PO2·H2O induces the formation of P-g-C3N4 nanotubes from g-C3N4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C3N4. The photocatalytic activities are dramatically enhanced in the reduction both of CO2 to produce CO and CH4 and of water to produce...

292 citations


Journal ArticleDOI
TL;DR: A type-II band alignment and a large built-in electric field are formed at the MoS2/ZnO interface, which ensure the enhanced separation of the photogenerated electron-hole pairs, indicating that it has potential for application in photovoltaic and photocatalytic devices.
Abstract: Previous investigations [H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C, 2013, 117, 20440-20445; J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, Appl. Phys. Lett., 2013, 102, 012111] demonstrated that molybdenum disulfide (MoS2) is a potential photocatalyst for water splitting. However, the photogenerated electron-hole pairs in MoS2 remain in the same spatial regions, resulting in a high rate of recombination. Using first-principles calculations, we designed a MoS2-based heterostructure by stacking MoS2 on two-dimensional zinc oxide (ZnO) and investigated its structural, electronic, and optical properties. The interaction at the MoS2/ZnO interface was found to be dominated by van der Waals (vdW) forces. The energy levels of both water oxidation and reduction lie within the bandgap of the MoS2/ZnO vdW heterostructure, which guarantee their occurrence for water splitting. Moreover, a type-II band alignment and a large built-in electric field are formed at the MoS2/ZnO interface, which ensure the enhanced separation of the photogenerated electron-hole pairs. In addition, strong optical absorption in the visible region was also found in the MoS2/ZnO vdW heterostructure, indicating that it has potential for application in photovoltaic and photocatalytic devices.

275 citations


Journal ArticleDOI
TL;DR: In this paper, the performance of g-C3N4/BiVO4 was investigated in Z-scheme configuration and the experimental observations were counterchecked with density functional theory simulations.
Abstract: BiVO4 is a considerably promising semiconductor for photoelectrochemical water splitting due to its stability, low cost and moderate band gap. In this research, g-C3N4 was proposed in Z-scheme configuration which boosted the performance of BiVO4 up to four times. The experimental observations were counterchecked with Density Functional Theory (DFT) simulations. A TiO2/BiVO4 heterojunction was developed and its performance was compared with that of g-C3N4/BiVO4. The photocurrent for g-C3N4/BiVO4 was 0.42 mAcm−2 at 1.23 V vs. RHE which was the highest among g-C3N4 based Z-scheme heterojunction devices. Lower charge transfer resistance, higher light absorption and more oxygen vacancy sites were observed for the g-C3N4 based heterojunction. The simulated results attested that g-C3N4 and BiVO4 formed a van der Waals type heterojunction, where an internal electric field facilitated the separation of electron/hole pair at g-C3N4/BiVO4 interface which further restrained the carrier recombination. Both the valence and conduction band edge positions of g-C3N4 and BiVO4 changed with the Fermi energy level. The resulted heterojunction had small effective masses of electrons (0.01 me) and holes (0.10 me) with ideal band edge positions where both CBM and VBM were well above and below the redox potential of water.

Journal ArticleDOI
TL;DR: The ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.
Abstract: A machine-learning model is developed that can accurately predict the band gap of inorganic solids based only on composition. This method uses support vector classification to first separate metals from nonmetals, followed by quantitatively predicting the band gap of the nonmetals using support vector regression. The superb accuracy of the regression model is obtained by using a training set composed entirely of experimentally measured band gaps and utilizing only compositional descriptors. In fact, because of the unique training set of experimental data, the machine learning predicted band gaps are significantly closer to the experimentally reported values than DFT (PBE-level) calculated band gaps. Not only does this resulting tool provide the ability to accurately predict the band gap for any composition but also the versatility and speed of the prediction based only on composition will make this a great resource to screen inorganic phase space and direct the development of functional inorganic materials.

Journal ArticleDOI
18 Jun 2018-ACS Nano
TL;DR: In this paper, a solution-synthesized and air-stable quasi-2D tellurium (Te) nanoflakes for short-wave infrared (SWIR) photodetectors were reported.
Abstract: Two-dimensional (2D) materials, particularly black phosphorus (bP), have demonstrated themselves to be excellent candidates for high-performance infrared photodetectors and transistors. However, high-quality bP can be obtained only via mechanical exfoliation from high-temperature- and high-pressure-grown bulk crystals and degrades rapidly when exposed to ambient conditions. Here, we report solution-synthesized and air-stable quasi-2D tellurium (Te) nanoflakes for short-wave infrared (SWIR) photodetectors. We perform comprehensive optical characterization via polarization-resolved transmission and reflection measurements and report the absorbance and complex refractive index of Te crystals. It is found that this material is an indirect semiconductor with a band gap of 0.31 eV. From temperature-dependent electrical measurements, we confirm this band-gap value and find that 12 nm thick Te nanoflakes show high hole mobilities of 450 and 1430 cm2 V-1 s-1 at 300 and 77 K, respectively. Finally, we demonstrate that despite its indirect band gap, Te can be utilized for high-performance SWIR photodetectors by employing optical cavity substrates consisting of Au/Al2O3 to dramatically increase the absorption in the semiconductor. By changing the thickness of the Al2O3 cavity, the peak responsivity of Te photoconductors can be tuned from 1.4 μm (13 A/W) to 2.4 μm (8 A/W) with a cutoff wavelength of 3.4 μm, fully capturing the SWIR band. An optimized room-temperature specific detectivity ( D*) of 2 × 109 cm Hz1/2 W-1 is obtained at a wavelength of 1.7 μm.

Journal ArticleDOI
TL;DR: A high-quality Cs2 AgBiBr6 film with ultra-smooth morphology, micro-sized grains, and high crystallinity is realized via anti-solvent dropping technology and post-annealing at high temperature and shows no hysteresis and a high stability.
Abstract: All-inorganic double-metal perovskite materials have recently gained much attention due to their three dimensionality (3D) and non-toxic nature to replace lead-based perovskite materials. Among all those double perovskite materials, theoretical works have demonstrated that Cs2 AgBiBr6 shows high stability and possesses a suitable band gap for solar-cell applications. However, the film-forming ability of Cs2 AgBiBr6 is found to be the utmost challenge hindering its development in thin-film solar-cell devices. In this work, a high-quality Cs2 AgBiBr6 film with ultra-smooth morphology, micro-sized grains, and high crystallinity is realized via anti-solvent dropping technology and post-annealing at high temperature. After optimization, the first example of an inverted planar heterojunction solar-cell device based on Cs2 AgBiBr6 exhibits a power conversion efficiency of 2.23 % with VOC =1.01 V, JSC =3.19 mA/cm2 , and FF=69.2 %. Besides, the device shows no hysteresis and a high stability.

Journal ArticleDOI
TL;DR: Efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated and can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density in air.
Abstract: Quasi-2D layered organometal halide perovskites have recently emerged as promising candidates for solar cells, because of their intrinsic stability compared to 3D analogs. However, relatively low power conversion efficiency (PCE) limits the application of 2D layered perovskites in photovoltaics, due to large energy band gap, high exciton binding energy, and poor interlayer charge transport. Here, efficient and water-stable quasi-2D perovskite solar cells with a peak PCE of 18.20% by using 3-bromobenzylammonium iodide are demonstrated. The unencapsulated devices sustain over 82% of their initial efficiency after 2400 h under relative humidity of ≈40%, and show almost unchanged photovoltaic parameters after immersion into water for 60 s. The robust performance of perovskite solar cells results from the quasi-2D perovskite films with hydrophobic nature and a high degree of electronic order and high crystallinity, which consists of both ordered large-bandgap perovskites with the vertical growth in the bottom region and oriented small-bandgap components in the top region. Moreover, due to the suppressed nonradiative recombination, the unencapsulated photovoltaic devices can work well as light-emitting diodes (LEDs), exhibiting an external quantum efficiency of 3.85% and a long operational lifetime of ≈96 h at a high current density of 200 mA cm-2 in air.

Journal ArticleDOI
TL;DR: An unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light.
Abstract: Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light.

Journal ArticleDOI
TL;DR: The authors observe a thickness-dependent metal-to-semiconductor transition in layered PtSe2 by means of electrical transport measurements, demonstrating that Pt Se2 possesses an unusual behavior among 2D materials, enabling novel applications in nano and optoelectronics.
Abstract: The possibility of tailoring physical properties by changing the number of layers in van der Waals crystals is one of the driving forces behind the emergence of two-dimensional materials. One example is bulk MoS2, which changes from an indirect gap semiconductor to a direct bandgap semiconductor in the monolayer form. Here, we show a much bigger tuning range with a complete switching from a metal to a semiconductor in atomically thin PtSe2 as its thickness is reduced. Crystals with a thickness of ~13 nm show metallic behavior with a contact resistance as low as 70 Ω·µm. As they are thinned down to 2.5 nm and below, we observe semiconducting behavior. In such thin crystals, we demonstrate ambipolar transport with a bandgap smaller than 2.2 eV and an on/off ratio of ~105. Our results demonstrate that PtSe2 possesses an unusual behavior among 2D materials, enabling novel applications in nano and optoelectronics.

Journal ArticleDOI
TL;DR: In this article, the authors systematically investigated the photocatalytic activities of Janus molybdenum dichalcogenides (MoXY, X/Y = O, S, Se, and Te), by studying their band gaps, redox energy levels and electrons and holes separation.
Abstract: The Janus structures of transition metal dichalcogenides with an intrinsic dipole have been proposed as efficient photocatalysts for water splitting, and successfully synthesized recently. However, the mechanism for their superior photocatalytic activities are not understood. Here, we systematically investigate the photocatalytic activities of Janus molybdenum dichalcogenides (MoXY, X/Y = O, S, Se, and Te), by studying their band gaps, redox energy levels and electrons and holes separation, by first-principles calculations. The intrinsic dipoles in the Janus structures cause notable band bending to achieve favorable band edge positions relative to water redox potentials, which makes the Janus structures as efficient heterojunction photocatalysts. Electrons and holes are spatially separated on different surfaces of the Janus structure due to the internal electric field, which effectively inhibits the recombination of excitons and ensures photocatalytic activity with high efficiency.

Journal ArticleDOI
TL;DR: In this paper, an α-Cesium lead halide perovskite (C-CsPbI3) was obtained in dry air (temperature: 20-30 °C; humidity: 10-20%).
Abstract: Inorganic cesium lead halide perovskites with superb thermal stability show promise to fabricate long-term operational photovoltaic devices. However, the cubic phase (α) of CsPbI3 with an appropriate band gap is unstable in air. We discover that highly stable α-CsPbI3 can be obtained in dry air (temperature: 20–30 °C; humidity: 10–20%) by replacing PbI2 with HPbI3 in a one-step deposition solution. Furthermore, the band gap of HPbI3-processed α-CsPbI3 is advantageously reduced from 1.72 to 1.68 eV due to the existence of tensile lattice strain. By employing such an α-CsPbI3 film in carbon-based perovskite solar cells (C-PSCs), a power conversion efficiency (PCE) of 9.5% is achieved, which is a record value for the α-CsPbI3 PSCs without hole transport material. Most importantly, over 90% of the initial PCE is retained for nonencapsulated devices after 3000 h of storage in dry air. Therefore, HPbI3-based one-step deposition presents a promising strategy to prepare high-performance and air-stable α-CsPbI3 PSCs.

Journal ArticleDOI
TL;DR: An unusually slow but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction of the PBDB-T:NCBDT devices, among the best for solution-processed organic solar cells.
Abstract: Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the Voc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells.

Journal ArticleDOI
TL;DR: The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content, and through introducing a suitable minor amount of water into the reaction mixture, this work can synthesize stable Cs PbBr 3 nanocry crystals.
Abstract: Lead-halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common-place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light-emitting devices, with the peak luminance of 4428 cd m-2 and external quantum yield of 1.7 %.

Journal ArticleDOI
TL;DR: In this paper, a few-layer Tellurium (Te) is shown to have a covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur.
Abstract: Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus (BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears. This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV (bulk) to indirect 1.17 eV (2L) and four (two) complex, highly anisotropic and layer-dependent hole (electron) pockets in the first Brillouin zone. It also exhibits an extraordinarily high hole mobility (∼105 cm2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This "one-dimension-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.

Journal ArticleDOI
TL;DR: In this article, a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere was performed and the results showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group C N owing to a break-up reaction in the pyridine nitride of a s-triazine-C 3N4.
Abstract: Reduced g-C3N4 material was prepared by a thermal treatment of g-C3N4 in presence of NaBH4 under N2 atmosphere. The prepared catalyst material was characterized by using elemental analyzer, FTIR and XPS and the analysis showed that the reduction treatment created nitrogen vacancies followed by a formation of functional group C N owing to a break-up reaction in the pyridine nitride of a s-triazine-C3N4. The findings of UV–vis DRS and DFT calculation revealed that the formed functional group C N results in a narrowed energy band gap owing to positive shift in the conduction band as well as valence band. The downshift observed in the valence band level made the catalyst material with a feature of visible light-driven water oxidation capacity, that was confirmed by the electron and hole sacrifice and OH trapping-EPR techniques. The intermediate energy level within the band gap of g-C3N4 originated from the vacancies caused an extended absorption, especially to the visible region. The analysis of PL emission spectrum confirmed that the reduction treatment could facilitate the spatial separation of photo-excited electron and hole, and enhance the charge transfer as well. RDE studies showed that the selective production of H2O2 by two-electron reduction of O2 was a predominant reaction step using the reduced g-C3N4. The reduced g-C3N4 prepared at 370 °C exhibited an efficient visible light driven catalytic performance on H2O2 production (170 μmol/L h−1) from pure H2O and O2 at ambient atmosphere in the absence of organic electron donors. The solar-to-H2O2 chemical conversion efficiency and apparent quantum yield approached to ∼0.26%, ∼4.3%, respectively. In addition, the experimental results obtained on recycling of the prepared g-C3N4 evidenced the photocatalytic stability of the material.

Journal ArticleDOI
Qiaodan Li1, Yong Li1, Yang Chen1, Lulu Wu1, Chaofan Yang1, Xiaoli Cui1 
01 Sep 2018-Carbon
TL;DR: In this paper, a simple and high-yield route is proposed to synthesize monocrystalline γ-graphyne by mechanochemistry, which has the advantages of high carriers mobility and semiconductor characteristic.

Journal ArticleDOI
TL;DR: A combined machine learning and density functional theory method is introduced to identify next generation inorganic phosphors with good thermal stability and quantum efficiency, a prerequisite to improve the performance of white LED light sources.
Abstract: Rare-earth substituted inorganic phosphors are critical for solid state lighting. New phosphors are traditionally identified through chemical intuition or trial and error synthesis, inhibiting the discovery of potential high-performance materials. Here, we merge a support vector machine regression model to predict a phosphor host crystal structure’s Debye temperature, which is a proxy for photoluminescent quantum yield, with high-throughput density functional theory calculations to evaluate the band gap. This platform allows the identification of phosphors that may have otherwise been overlooked. Among the compounds with the highest Debye temperature and largest band gap, NaBaB9O15 shows outstanding potential. Following its synthesis and structural characterization, the structural rigidity is confirmed to stem from a unique corner sharing [B3O7]5– polyanionic backbone. Substituting this material with Eu2+ yields UV excitation bands and a narrow violet emission at 416 nm with a full-width at half-maximum of 34.5 nm. More importantly, NaBaB9O15:Eu2+ possesses a quantum yield of 95% and excellent thermal stability. Identifying phosphors with good thermal stability and quantum efficiency is a prerequisite to improve the performance of white LED light sources. Here, a combined machine learning and density functional theory method is introduced to identify next generation inorganic phosphors.

Journal ArticleDOI
TL;DR: In this paper, the authors used kernel ridge (KRR), support vector (SVR), Gaussian process (GPR), and bootstrap aggregating regression algorithms to predict the band gap with the lowest root-mean-squared error of 0.14 eV.
Abstract: MXenes are two-dimensional (2D) transition metal carbides and nitrides, and are invariably metallic in pristine form. While spontaneous passivation of their reactive bare surfaces lends unprecedented functionalities, consequently a many-folds increase in number of possible functionalized MXene makes their characterization difficult. Here, we study the electronic properties of this vast class of materials by accurately estimating the band gaps using statistical learning. Using easily available properties of the MXene, namely, boiling and melting points, atomic radii, phases, bond lengths, etc., as input features, models were developed using kernel ridge (KRR), support vector (SVR), Gaussian process (GPR), and bootstrap aggregating regression algorithms. Among these, the GPR model predicts the band gap with lowest root-mean-squared error (rmse) of 0.14 eV, within seconds. Most importantly, these models do not involve the Perdew–Burke–Ernzerhof (PBE) band gap as a feature. Our results demonstrate that machin...

Journal ArticleDOI
TL;DR: In this article, the authors partially replace Pb2+ with Ca2+ in the CsPbI3 precursor, producing multiple benefits, such as more uniform films with larger grains and better contact at the interface between the perovskite and the hole transport layer.
Abstract: Cesium metal halides are potential light-harvesting materials for use in the top cells of multi-junction devices due to their suitable bandgaps and good thermal stabilities. In particular, CsPbI3 has a bandgap of 1.7 eV, which is suitable for perovskite/Si tandem cells. However, the desirable black phase for CsPbI3 is not stable because Cs is too small to support the PbI6 octahedra. Also, there is room for improvement in terms of cell performance. Herein, we partially replace Pb2+ with Ca2+ in the CsPbI3 precursor, producing multiple benefits. Firstly, more uniform films with larger grains are produced from CsPbI3 with Ca2+, due to the reduction in the size of the colloids in the precursor solution with Ca2+. This morphology improvement provides better contact at the interface between the perovskite and the hole transport layer. In addition, it is found that the surface of the film is modified by the formation of a Ca rich oxide layer, providing a surface passivation effect. Finally, incorporation of Ca increases the band gap, leading to an increase in output voltage. The best CsPbI3 solar cell using 5% Ca2+ substitution in the precursor achieves a stabilised efficiency of 13.3%, and maintains 85% of its initial efficiency for over 2 months with encapsulation.

Journal ArticleDOI
TL;DR: In this paper, the effect of copper doping on crystal structure of ZnO nanoparticles was investigated and the optical band gap of pure and copper-doped ZnOs was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13
Abstract: Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

Journal ArticleDOI
TL;DR: In this article, a van der Waals-based inter-layer heterostructure of a blue phosphorene (BlueP)/BSe interlayer interlayer structure has been shown to be a potential photocatalyst for water splitting under different pH conditions.
Abstract: Constructing van der Waals heterostructures can enhance two-dimensional (2D) materials with desired properties and greatly extend the applications of the original materials. On the basis of density functional theory calculations, we verify that a blue phosphorene (BlueP)/BSe inter-layer heterostructure possesses an indirect gap and intrinsic type-II band alignment. In particular, this heterostructure is found to be a potential photocatalyst for water splitting under different pH conditions and exhibits enhanced optical properties in the visible and ultraviolet light zones. Besides, we confirm that the band gap, band edge position, and optical absorption of the BlueP/BSe heterostructure can be tailored by biaxial strain. And the tensile strain increases the optical absorption significantly over the entire energy range of visible light, which can increase the efficiency of solar energy conversion. Furthermore, we determine that adjusting the number of sublayers is another effective method to modulate the band gaps and band alignments of heterostructures. Our studies provide a promising route to design new BlueP-based vdW heterostructures and explore their potential applications in electronic and optoelectronic devices.

Journal ArticleDOI
TL;DR: In this paper, the authors used hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys and found that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams.
Abstract: Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.