scispace - formally typeset
Search or ask a question
Topic

Band offset

About: Band offset is a research topic. Over the lifetime, 2446 publications have been published within this topic receiving 53450 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of nitrogen incorporation on the interface chemical bonding states, optical dielectric function, band alignment, and electrical properties of sputtering-derived HfTiO high-k gate dielectrics on GaAs substrates have been studied by angle resolved X-ray photoemission spectroscopy (ARXPS), spectroscopic ellipsometry (SE), and electrical measurements.
Abstract: Effects of nitrogen incorporation on the interface chemical bonding states, optical dielectric function, band alignment, and electrical properties of sputtering-derived HfTiO high-k gate dielectrics on GaAs substrates have been studied by angle resolved X-ray photoemission spectroscopy (ARXPS), spectroscopy ellipsometry (SE), and electrical measurements. XPS analysis has confirmed that the interfacial layer of a HfTiO/GaAs gate stack is suppressed effectively after nitrogen incorporation. Analysis by SE has confirmed that reduction in band gap and increase in refractive index are observed with the incorporation of nitrogen. Reduction in valence band offset and increase in conduction band offset have been observed for a HfTiON/GaAs gate stack. Electrical measurements based on metal-oxide-semiconductor (MOS) capacitors have shown that the MOS capacitor with a HfTiON/GaAs stacked gate dielectric annealed at 600 °C exhibits low interface-state density (2.8 × 1012 cm−2 eV−1), small gate leakage current (2.67 × 10−5 A cm−2 at Vg = Vfb + V), and large dielectric constant (25.8). The involved mechanisms may originate from the decrease in the interface state density and the increase in the conduction band offset. The appropriate band offset relative to GaAs and excellent interface properties render HfTiON/GaAs as promising gate stacks in future III–V-based devices.

137 citations

Journal ArticleDOI
TL;DR: The impact of post-deposition hydrogen plasma treatment (HPT) on passivation in amorphous/crystalline silicon (a-Si:H/c-Si) interfaces is investigated in this paper.
Abstract: The impact of post-deposition hydrogen plasma treatment (HPT) on passivation in amorphous/crystalline silicon (a-Si:H/c-Si) interfaces is investigated. Combining low temperature a-Si:H deposition and successive HPT, a high minority carrier lifetime >8 ms is achieved on c-Si 〈100〉, which is otherwise prone to epitaxial growth and thus inferior passivation. It is shown that the passivation improvement stems from diffusion of hydrogen atoms to the heterointerface and subsequent dangling bond passivation. Concomitantly, the a-Si:H hydrogen density increases, leading to band gap widening and void formation, while the film disorder is not increased. Thus, HPT allows for a-Si:H band gap and a-Si:H/c-Si band offset engineering.

136 citations

Journal ArticleDOI
23 Mar 2015-ACS Nano
TL;DR: The lateral electron transport shows ambipolar behavior characteristic of graphene combined with a conductivity saturation at sufficiently high positive (negative) gate bias, associated with carrier population of the conduction (valence) band in WSe2.
Abstract: Using different types of WSe2 and graphene-based heterostructures, we experimentally determine the offset between the graphene neutrality point and the WSe2 conduction and valence band edges, as well as the WSe2 dielectric constant along the c-axis. In a first heterostructure, consisting of WSe2-on-graphene, we use the WSe2 layer as the top dielectric in dual-gated graphene field-effect transistors to determine the WSe2 capacitance as a function of thickness, and the WSe2 dielectric constant along the c-axis. In a second heterostructure consisting of graphene-on-WSe2, the lateral electron transport shows ambipolar behavior characteristic of graphene combined with a conductivity saturation at sufficiently high positive (negative) gate bias, associated with carrier population of the conduction (valence) band in WSe2. By combining the experimental results from both heterostructures, we determine the band offset between the graphene charge neutrality point, and the WSe2 conduction and valence band edges.

135 citations

Journal ArticleDOI
TL;DR: In this paper, Kuzmik et al. showed that AlInN can be grown lattice-matched to GaN while still inducing high charge carrier densities at the heterointerface of around 2.7×1013cm−3 by the differences in spontaneous polarization.
Abstract: AlInN∕GaN heterostructures have been proposed to possess advantageous properties for field-effect transistors (FETs) over AlGaN∕GaN [Kuzmik, IEEE Electron Device Lett. 22, 501 (2001); Yamaguchi et al., Phys. Status Solidi A 188, 895 (2001)]. A major advantage of such structures is that AlInN can be grown lattice-matched to GaN while still inducing high charge carrier densities at the heterointerface of around 2.7×1013cm−3 by the differences in spontaneous polarization. Additionally, it offers a higher band offset to GaN than AlGaN. We grew AlInN FET structures on Si(111) substrates by metalorganic chemical vapor phase epitaxy with In concentrations ranging from 9.5% to 24%. Nearly lattice-matched structures show sheet carrier densities of 3.2×1013cm−2 and mobilities of ∼406cm2∕Vs. Such Al0.84In0.16N FETs have maximum dc currents of 1.33A∕mm for devices with 1μm gate length.

134 citations

Journal ArticleDOI
TL;DR: The direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide is reported, providing evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap.
Abstract: Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local ...

134 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
91% related
Thin film
275.5K papers, 4.5M citations
90% related
Silicon
196K papers, 3M citations
89% related
Amorphous solid
117K papers, 2.2M citations
85% related
Raman spectroscopy
122.6K papers, 2.8M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202267
202178
202085
201980
201882