scispace - formally typeset
Search or ask a question
Topic

Bandwidth (computing)

About: Bandwidth (computing) is a research topic. Over the lifetime, 34025 publications have been published within this topic receiving 452512 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work describes an end-to-end methodology, called self-loading periodic streams (SLoPS), for measuring avail-bw, and uses pathload, a nonintrusive tool, to evaluate the variability ("dynamics") of the avail- bw in Internet paths.
Abstract: The available bandwidth (avail-bw) in a network path is of major importance in congestion control, streaming applications, quality-of-service verification, server selection, and overlay networks. We describe an end-to-end methodology, called self-loading periodic streams (SLoPS), for measuring avail-bw. The basic idea in SLoPS is that the one-way delays of a periodic packet stream show an increasing trend when the stream's rate is higher than the avail-bw. We have implemented SLoPS in a tool called pathload. The accuracy of the tool has been evaluated with both simulations and experiments over real-world Internet paths. Pathload is nonintrusive, meaning that it does not cause significant increases in the network utilization, delays, or losses. We used pathload to evaluate the variability ("dynamics") of the avail-bw in Internet paths. The avail-bw becomes significantly more variable in heavily utilized paths, as well as in paths with limited capacity (probably due to a lower degree of statistical multiplexing). We finally examine the relation between avail-bw and TCP throughput. A persistent TCP connection can be used to measure roughly the avail-bw in a path, but TCP saturates the path and increases significantly the path delays and jitter.

765 citations

Journal ArticleDOI
Anwar Elwalid1, Debasis Mitra1
TL;DR: It is shown that for general Markovian traffic sources it is possible to assign a notional effective bandwidth to each source that is an explicitly identified, simply computed quantity with provably correct properties in the natural asymptotic regime of small loss probabilities.
Abstract: A prime instrument for controlling congestion in a high-speed network is admission control, which limits calls and guarantees a grade of service determined by delay and loss probability in the multiplexer. It is shown that for general Markovian traffic sources it is possible to assign a notional effective bandwidth to each source that is an explicitly identified, simply computed quantity with provably correct properties in the natural asymptotic regime of small loss probabilities. It is the maximal real eigenvalue of a matrix that is directly obtained from the source characteristics and the admission criterion, and for several sources it is simply additive. Both fluid and point process models are considered. Numerical results show that the acceptance set for heterogeneous classes of sources is closely approximated and conservatively bounded by the set obtained from the effective bandwidth approximation. The bandwidth-reducing properties of the leaky bucket regulator are exhibited numerically. >

759 citations

Journal ArticleDOI
19 Oct 2003
TL;DR: This paper presents Bullet, a scalable and distributed algorithm that enables nodes spread across the Internet to self-organize into a high bandwidth overlay mesh, and finds that, relative to tree-based solutions, Bullet reduces the need to perform expensive bandwidth probing.
Abstract: In recent years, overlay networks have become an effective alternative to IP multicast for efficient point to multipoint communication across the Internet. Typically, nodes self-organize with the goal of forming an efficient overlay tree, one that meets performance targets without placing undue burden on the underlying network. In this paper, we target high-bandwidth data distribution from a single source to a large number of receivers. Applications include large-file transfers and real-time multimedia streaming. For these applications, we argue that an overlay mesh, rather than a tree, can deliver fundamentally higher bandwidth and reliability relative to typical tree structures. This paper presents Bullet, a scalable and distributed algorithm that enables nodes spread across the Internet to self-organize into a high bandwidth overlay mesh. We construct Bullet around the insight that data should be distributed in a disjoint manner to strategic points in the network. Individual Bullet receivers are then responsible for locating and retrieving the data from multiple points in parallel.Key contributions of this work include: i) an algorithm that sends data to different points in the overlay such that any data object is equally likely to appear at any node, ii) a scalable and decentralized algorithm that allows nodes to locate and recover missing data items, and iii) a complete implementation and evaluation of Bullet running across the Internet and in a large-scale emulation environment reveals up to a factor two bandwidth improvements under a variety of circumstances. In addition, we find that, relative to tree-based solutions, Bullet reduces the need to perform expensive bandwidth probing. In a tree, it is critical that a node's parent delivers a high rate of application data to each child. In Bullet however, nodes simultaneously receive data from multiple sources in parallel, making it less important to locate any single source capable of sustaining a high transmission rate.

735 citations

Proceedings ArticleDOI
23 Feb 2011
TL;DR: This paper focuses on the rate-adaptation mechanisms of adaptive streaming and experimentally evaluates two major commercial players (Smooth Streaming, Netflix) and one open source player (OSMF).
Abstract: Adaptive (video) streaming over HTTP is gradually being adopted, as it offers significant advantages in terms of both user-perceived quality and resource utilization for content and network service providers. In this paper, we focus on the rate-adaptation mechanisms of adaptive streaming and experimentally evaluate two major commercial players (Smooth Streaming, Netflix) and one open source player (OSMF). Our experiments cover three important operating conditions. First, how does an adaptive video player react to either persistent or short-term changes in the underlying network available bandwidth. Can the player quickly converge to the maximum sustainable bitrate? Second, what happens when two adaptive video players compete for available bandwidth in the bottleneck link? Can they share the resources in a stable and fair manner? And third, how does adaptive streaming perform with live content? Is the player able to sustain a short playback delay? We identify major differences between the three players, and significant inefficiencies in each of them.

729 citations

Journal ArticleDOI
TL;DR: A game theoretic framework for bandwidth allocation for elastic services in high-speed networks based on the Nash bargaining solution from cooperative game theory that can be used to characterize a rate allocation and a pricing policy which takes into account users' budget in a fair way.
Abstract: In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in high-speed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from the point of view of the whole system, but are also consistent with the fairness axioms of game theory. We first consider the centralized problem and then show that this procedure can be decentralized so that greedy optimization by users yields the system optimal bandwidth allocations. We propose a distributed algorithm for implementing the optimal and fair bandwidth allocation and provide conditions for its convergence. The paper concludes with the pricing of elastic connections based on users' bandwidth requirements and users' budget. We show that the above bargaining framework can be used to characterize a rate allocation and a pricing policy which takes into account users' budget in a fair way and such that the total network revenue is maximized.

728 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20251
20241
20232,789
20226,804
20212,124
20201,711