scispace - formally typeset

Topic

Bandwidth management

About: Bandwidth management is a(n) research topic. Over the lifetime, 3679 publication(s) have been published within this topic receiving 58936 citation(s). The topic is also known as: bandwidth equalization.
Papers
More filters

Journal ArticleDOI
Sally Floyd1, Kevin Fall2Institutions (2)
TL;DR: It is argued that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion, and several general approaches are discussed for identifying those flows suitable for bandwidth regulation.
Abstract: This paper considers the potentially negative impacts of an increasing deployment of non-congestion-controlled best-effort traffic on the Internet. These negative impacts range from extreme unfairness against competing TCP traffic to the potential for congestion collapse. To promote the inclusion of end-to-end congestion control in the design of future protocols using best-effort traffic, we argue that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion. The paper discusses several general approaches for identifying those flows suitable for bandwidth regulation. These approaches are to identify a high-bandwidth flow in times of congestion as unresponsive, "not TCP-friendly", or simply using disproportionate bandwidth. A flow that is not "TCP-friendly" is one whose long-term arrival rate exceeds that of any conformant TCP in the same circumstances. An unresponsive flow is one failing to reduce its offered load at a router in response to an increased packet drop rate, and a disproportionate-bandwidth flow is one that uses considerably more bandwidth than other flows in a time of congestion.

1,769 citations


Journal ArticleDOI
TL;DR: The authors propose a computationally simple approximate expression to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links, which can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage.
Abstract: The authors propose a computationally simple approximate expression for the equivalent capacity or bandwidth requirement of both individual and multiplexed connections, based on their statistical characteristics and the desired grade-of-service (GOS). The purpose of such an expression is to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links. These link metrics can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage. While the methodology proposed can provide an exact approach to the computation of the equivalent capacity, the associated complexity makes it infeasible for real-time network traffic control applications. Hence, an approximation is required. The validity of the approximation developed is verified by comparison to both exact computations and simulation results. >

1,436 citations


Journal ArticleDOI
David D. Clark1, Wenjia Fang2Institutions (2)
TL;DR: This paper focuses on algorithms for essential components of the "allocated-capacity" framework: a differential dropping algorithm for network routers and a tagging algorithm for profile meters at the edge of the network for bulk-data transfers.
Abstract: This paper presents the "allocated-capacity" framework for providing different levels of best-effort service in times of network congestion. The "allocated-capacity" framework-extensions to the Internet protocols and algorithms-can allocate bandwidth to different users in a controlled and predictable way during network congestion. The framework supports two complementary ways of controlling the bandwidth allocation: sender-based and receiver-based. In today's heterogeneous and commercial Internet the framework can serve as a basis for charging for usage and for more efficiently utilizing the network resources. We focus on algorithms for essential components of the framework: a differential dropping algorithm for network routers and a tagging algorithm for profile meters at the edge of the network for bulk-data transfers. We present simulation results to illustrate the effectiveness of the combined algorithms in controlling transmission control protocol (TCP) traffic to achieve certain targeted sending rates.

1,013 citations


Patent
29 Oct 1999-
Abstract: A plurality of computer nodes communicate using seemingly random Internet Protocol source and destination addresses. Data packets matching criteria defined by a moving window of valid addresses are accepted for further processing, while those that do not meet the criteria are quickly rejected. Improvements to the basic design include (1) a load balancer that distributes packets across different transmission paths according to transmission path quality; (2) a DNS proxy server that transparently creates a virtual private network in response to a domain name inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-service attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by limiting the rate at which a transmitter can be synchronized with a receiver; and (5) a signaling synchronizer that allows a large number of nodes to communicate with a central node by partitioning the communication function between two separate entities.

786 citations


Journal ArticleDOI
Robert L. Carter1, Mark Crovella1Institutions (1)
Abstract: The quality of available network connections can often have a large impact on the performance of distributed applications. For example, document transfer applications such as FTP, Gopher and the World Wide Web suffer increased response times as a result of network congestion. For these applications, the document transfer time is directly related to the available bandwidth of the connection. Available bandwidth depends on two things: 1) the underlying capacity of the path from client to server, which is limited by the bottleneck link; and 2) the amount of other traffic competing for links on the path. If measurements of these quantities were available to the application, the current utilization of connections could be calculated. Network utilization could then be used as a basis for selection from a set of alternative connections or servers, thus providing reduced response time. Such a dynamic server selection scheme would be especially important in a mobile computing environment in which the set of available servers is frequently changing. In order to provide these measurements at the application level, we introduce two tools: bprobe, which provides an estimate of the uncongested bandwidth of a path; and cprobe, which gives an estimate of the current congestion along a path. These two measures may be used in combination to provide the application with an estimate of available bandwidth between server and client thereby enabling application-level congestion avoidance. In this paper we discuss the design and implementation of our probe tools, specifically illustrating the techniques used to achieve accuracy and robustness. We present validation studies for both tools which demonstrate their reliability in the face of actual Internet conditions; and we give results of a survey of available bandwidth to a random set of WWW servers as a sample application of our probe technique. We conclude with descriptions of other applications of our measurement tools, several of which are currently under development.

520 citations


Network Information
Related Topics (5)
Network packet

159.7K papers, 2.2M citations

87% related
Wireless ad hoc network

49K papers, 1.1M citations

86% related
Wireless network

122.5K papers, 2.1M citations

86% related
Wireless sensor network

142K papers, 2.4M citations

85% related
Server

79.5K papers, 1.4M citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202136
202049
201966
201880
201799