Topic
Bandwidth (signal processing)
About: Bandwidth (signal processing) is a(n) research topic. Over the lifetime, 48550 publication(s) have been published within this topic receiving 600741 citation(s). The topic is also known as: Bandwidth (signal processing) & bandwidth.
Papers published on a yearly basis
Papers
More filters
07 Nov 2004
TL;DR: To improve radio sensitivity of the sensing function through processing gain, three digital signal processing techniques are investigated: matched filtering, energy detection and cyclostationary feature detection.
Abstract: There are new system implementation challenges involved in the design of cognitive radios, which have both the ability to sense the spectral environment and the flexibility to adapt transmission parameters to maximize system capacity while coexisting with legacy wireless networks. The critical design problem is the need to process multigigahertz wide bandwidth and reliably detect presence of primary users. This places severe requirements on sensitivity, linearity and dynamic range of the circuitry in the RF front-end. To improve radio sensitivity of the sensing function through processing gain we investigated three digital signal processing techniques: matched filtering, energy detection and cyclostationary feature detection. Our analysis shows that cyclostationary feature detection has advantages due to its ability to differentiate modulated signals, interference and noise in low signal to noise ratios. In addition, to further improve the sensing reliability, the advantage of a MAC protocol that exploits cooperation among many cognitive users is investigated.
2,761 citations
TL;DR: Performance of time-hopping spread-spectrum multiple-access systems employing impulse signal technology for both analog and digital data modulation formats under ideal multiple- access channel conditions is estimated.
Abstract: Attractive features of time-hopping spread-spectrum multiple-access systems employing impulse signal technology are outlined, and emerging design issues are described. Performance of such communications systems in terms of achievable transmission rate and multiple-access capability are estimated for both analog and digital data modulation formats under ideal multiple-access channel conditions.
2,659 citations
TL;DR: The characteristics of impulse radio using a modulation format that can be supported by currently available impulse signal technology are described and analytical estimates of its multiple- access capability under ideal multiple-access channel conditions are given.
Abstract: Impulse radio, a form of ultra-wide bandwidth (UWB) spread-spectrum signaling, has properties that make it a viable candidate for short-range communications in dense multipath environments. This paper describes the characteristics of impulse radio using a modulation format that can be supported by currently available impulse signal technology and gives analytical estimates of its multiple-access capability under ideal multiple-access channel conditions.
2,351 citations
IBM1
TL;DR: The key to the success of the current procedure is the reintroduction of a non- stochastic term which was previously omitted together with use of the bandwidth to reduce bias in estimation without inflating variance.
Abstract: We present a new method for data-based selection of the bandwidth in kernel density estimation which has excellent properties It improves on a recent procedure of Park and Marron (which itself is a good method) in various ways First, the new method has superior theoretical performance; second, it also has a computational advantage; third, the new method has reliably good performance for smooth densities in simulations, performance that is second to none in the existing literature These methods are based on choosing the bandwidth to (approximately) minimize good quality estimates of the mean integrated squared error The key to the success of the current procedure is the reintroduction of a non- stochastic term which was previously omitted together with use of the bandwidth to reduce bias in estimation without inflating variance
2,298 citations
TL;DR: An adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel is developed and a new hybrid analog/digital precoding algorithm is proposed that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions.
Abstract: Millimeter wave (mmWave) cellular systems will enable gigabit-per-second data rates thanks to the large bandwidth available at mmWave frequencies. To realize sufficient link margin, mmWave systems will employ directional beamforming with large antenna arrays at both the transmitter and receiver. Due to the high cost and power consumption of gigasample mixed-signal devices, mmWave precoding will likely be divided among the analog and digital domains. The large number of antennas and the presence of analog beamforming requires the development of mmWave-specific channel estimation and precoding algorithms. This paper develops an adaptive algorithm to estimate the mmWave channel parameters that exploits the poor scattering nature of the channel. To enable the efficient operation of this algorithm, a novel hierarchical multi-resolution codebook is designed to construct training beamforming vectors with different beamwidths. For single-path channels, an upper bound on the estimation error probability using the proposed algorithm is derived, and some insights into the efficient allocation of the training power among the adaptive stages of the algorithm are obtained. The adaptive channel estimation algorithm is then extended to the multi-path case relying on the sparse nature of the channel. Using the estimated channel, this paper proposes a new hybrid analog/digital precoding algorithm that overcomes the hardware constraints on the analog-only beamforming, and approaches the performance of digital solutions. Simulation results show that the proposed low-complexity channel estimation algorithm achieves comparable precoding gains compared to exhaustive channel training algorithms. The results illustrate that the proposed channel estimation and precoding algorithms can approach the coverage probability achieved by perfect channel knowledge even in the presence of interference.
1,916 citations