scispace - formally typeset
Search or ask a question
Topic

Bandwidth (signal processing)

About: Bandwidth (signal processing) is a research topic. Over the lifetime, 48550 publications have been published within this topic receiving 600741 citations. The topic is also known as: Bandwidth (signal processing) & bandwidth.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum, and proposes a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms.
Abstract: Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then low-pass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, real-time performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.

1,186 citations

Proceedings ArticleDOI
P. J. Gibson1
01 Sep 1979
TL;DR: The Vivaldi Aerial is a new member of the class of aperiodic continuously scaled antenna structures and, as such, it has theoretically unlimited instantaneous frequency bandwidth as discussed by the authors, and can be made to conform to a constant gain vs. frequency performance.
Abstract: The Vivaldi Aerial is a new member of the class of aperiodic continuously scaled antenna structures and, as such, it has theoretically unlimited instantaneous frequency bandwidth. This aerial has significant gain and linear polarisation and can be made to conform to a constant gain vs. frequency performance. One such design has been made with approximately 10 dBI gain and ?20 dB sidelobe level over an instantaneous frequency bandwidth extending from below 2 GHz to above 40 GHz.

1,175 citations

Journal ArticleDOI
TL;DR: A memory polynomial model for the predistorter is proposed and implemented using an indirect learning architecture and linearization performance is demonstrated on a three-carrier WCDMA signal.
Abstract: Power amplifiers (PAs) are inherently nonlinear devices and are used in virtually all communications systems. Digital baseband predistortion is a highly cost-effective way to linearize PAs, but most existing architectures assume that the PA has a memoryless nonlinearity. For wider bandwidth applications such as wideband code-division multiple access (WCDMA) or wideband orthogonal frequency-division multiplexing (W-OFDM), PA memory effects can no longer be ignored, and memoryless predistortion has limited effectiveness. In this paper, instead of focusing on a particular PA model and building a corresponding predistorter, we focus directly on the predistorter structure. In particular, we propose a memory polynomial model for the predistorter and implement it using an indirect learning architecture. Linearization performance is demonstrated on a three-carrier WCDMA signal.

1,160 citations

Journal ArticleDOI
TL;DR: A new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components that supports the empirical observations, and a detailed theoretical analysis of the system's performance is provided.
Abstract: Wideband analog signals push contemporary analog-to-digital conversion (ADC) systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the band limit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its band limit in hertz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W hertz. In contrast to Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system's performance that supports the empirical observations.

1,138 citations

Journal ArticleDOI
26 Apr 2010
TL;DR: In this article, the authors formalize the notion of multipath sparsity and present a new approach to estimate sparse (or effectively sparse) multipath channels that is based on some of the recent advances in the theory of compressed sensing.
Abstract: High-rate data communication over a multipath wireless channel often requires that the channel response be known at the receiver. Training-based methods, which probe the channel in time, frequency, and space with known signals and reconstruct the channel response from the output signals, are most commonly used to accomplish this task. Traditional training-based channel estimation methods, typically comprising linear reconstruction techniques, are known to be optimal for rich multipath channels. However, physical arguments and growing experimental evidence suggest that many wireless channels encountered in practice tend to exhibit a sparse multipath structure that gets pronounced as the signal space dimension gets large (e.g., due to large bandwidth or large number of antennas). In this paper, we formalize the notion of multipath sparsity and present a new approach to estimating sparse (or effectively sparse) multipath channels that is based on some of the recent advances in the theory of compressed sensing. In particular, it is shown in the paper that the proposed approach, which is termed as compressed channel sensing (CCS), can potentially achieve a target reconstruction error using far less energy and, in many instances, latency and bandwidth than that dictated by the traditional least-squares-based training methods.

1,066 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
91% related
Amplifier
163.9K papers, 1.3M citations
91% related
Network packet
159.7K papers, 2.2M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Communication channel
137.4K papers, 1.7M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202217
20211,517
20202,656
20193,121
20183,100
20172,744