scispace - formally typeset

Topic

Bark

About: Bark is a(n) research topic. Over the lifetime, 12004 publication(s) have been published within this topic receiving 147931 citation(s).


Papers
More filters
Journal ArticleDOI
TL;DR: High activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet and potato peel and beetroot peel extracts showed strong antioxidant effects.
Abstract: The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.

3,402 citations

Journal ArticleDOI
TL;DR: This review focuses on bark defenses, a front line against organisms trying to reach the nutrient-rich phloem, and questions about their coevolution with bark beetles are discussed.
Abstract: Conifers are long-lived organisms, and part of their success is due to their potent defense mechanisms. This review focuses on bark defenses, a front line against organisms trying to reach the nutrient-rich phloem. A major breach of the bark can lead to tree death, as evidenced by the millions of trees killed every year by specialized bark-invading insects. Different defense strategies have arisen in conifer lineages, but the general strategy is one of overlapping constitutive mechanical and chemical defenses overlaid with the capacity to up-regulate additional defenses. The defense strategy incorporates a graded response from 'repel', through 'defend' and 'kill', to 'compartmentalize', depending upon the advance of the invading organism. Using a combination of toxic and polymer chemistry, anatomical structures and their placement, and inducible defenses, conifers have evolved bark defense mechanisms that work against a variety of pests. However, these can be overcome by strategies including aggregation pheromones of bark beetles and introduction of virulent phytopathogens. The defense structures and chemicals in conifer bark are reviewed and questions about their coevolution with bark beetles are discussed.

831 citations

Journal ArticleDOI
TL;DR: Oak bark out-performed the other chars and nearly mimicked Calgon F-400 adsorption for lead and cadmium, and the oak bark char's ability to remove Pb(II) and Cd( II) is remarkable when considered in terms of the amount of metal adsorbed per unit surface area.
Abstract: Bio-char by-products from fast wood/bark pyrolyses, were investigated as adsorbents for the removal of the toxic metals (As3+, Cd2+, Pb2+) from water. Oak bark, pine bark, oak wood, and pine wood chars were obtained from fast pyrolysis at 400 and 450 °C in an auger-fed reactor and characterized. A commercial activated carbon was also investigated for comparison. Chars were sieved (>600, 600–250, 250–177, 177–149, and 1 × 10 −5 – 5 × 10 −3 M for lead and cadmium). Oak bark out-performed the other chars and nearly mimicked Calgon F-400 adsorption for lead and cadmium. In an aqueous lead solution with initial concentration of 4.8 × 10 −4 M , both oak bark and Calgon F-400 (10 g/L) removed nearly 100% of the heavy metal. Oak bark (10 g/L) also removed about 70% of arsenic and 50% of cadmium from aqueous solutions. Varying temperatures (e.g., 5, 25, and 40 °C) were used to determine the effect of temperatures. The equilibrium data were modeled with the help of Langmuir and Freundlich equations. Overall, the data are well fitted with both the models, with a slight advantage for Langmuir model. The oak bark char's ability to remove Pb(II) and Cd(II) is remarkable when considered in terms of the amount of metal adsorbed per unit surface area (0.5157 mg/m2 for Pb(II) and 0.213 mg/m2 for Cd(II) versus that of commercial activated carbon.

762 citations

Journal ArticleDOI
TL;DR: In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus, however, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark olerosin has caused complete mycelial zone inhibition for As pergillus flavus and A. och raceus.
Abstract: The antioxidant, antifungal and antibacterial potentials of volatile oils and oleoresin of Cinnamomum zeylanicum Blume (leaf and bark) were investigated in the present study. The oleoresins have shown excellent activity for the inhibition of primary and secondary oxidation products in mustard oil added at the concentration of 0.02% which were evaluated using peroxide, thiobarbituric acid, p-anisidine and carbonyl values. Moreover, it was further supported by other complementary antioxidant assays such as ferric thiocyanate method in linoleic acid system, reducing power, chelating and scavenging effects on 1,1 0 -diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus. However, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark oleoresin has caused complete mycelial zone inhibition for Aspergillus flavus and A. ochraceus along with Aspergillus niger, Aspergillus terreus, P. citrinum and Penicillium viridicatum at 6 lL. Using agar well diffusion method, leaf volatile oil and oleoresin have shown better results in comparison with bark volatile oil, oleoresin and commercial bactericide, i.e., ampicillin. Gas chromatographic–mass spectroscopy studies on leaf volatile oil and oleoresin resulted in the identification of 19 and 25 components, which accounts for the 99.4% and 97.1%, respectively of the total amount and the major component was eugenol with 87.3% and 87.2%, respectively. The analysis of cinnamon bark volatile oil showed the presence of 13 components accounting for 100% of the total amount. (E)-cinnamaldehyde was found as the major component along with d-cadinene (0.9%), whereas its bark oleoresin showed the presence of 17 components accounting for 92.3% of the total amount. The major components were (E)-cinnamaldehyde (49.9%), along with several other components. � 2007 Elsevier Ltd. All rights reserved.

527 citations

Journal ArticleDOI
TL;DR: The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils, bark beetles, and insect-associated tree pathogens.
Abstract: Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.

486 citations


Network Information
Related Topics (5)
Eucalyptus

3.8K papers, 66.2K citations

85% related
Acacia

2.2K papers, 41.8K citations

82% related
Medicinal plants

3.8K papers, 108.6K citations

82% related
Woody plant

12.4K papers, 301.8K citations

81% related
Azadirachta

4.7K papers, 78.2K citations

81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20225
2021352
2020408
2019442
2018465
2017426