scispace - formally typeset



About: Basalt is a(n) research topic. Over the lifetime, 18687 publication(s) have been published within this topic receiving 805136 citation(s).

More filters
01 Jan 1989
Abstract: Summary Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ≈ Rb ≈ (≈ Tl) ≈ Ba(≈ W) > Th > U ≈ Nb = Ta ≈ K > La > Ce ≈ Pb > Pr (≈ Mo) ≈ Sr > P ≈ Nd (> F) > Zr = Hf ≈ Sm > Eu ≈ Sn (≈ Sb) ≈ Ti > Dy ≈ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs. In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (⩽1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (⩽2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.

17,505 citations

Journal ArticleDOI
Abstract: A system is presented whereby volcanic rocks may be classified chemically as follows:I. Subalkaline Rocks:A. Tholeiitic basalt series:Tholeiitic picrite-basalt; tholeiite; tholeiitic andesite.B. Calc-alkali series:High-alumina basalt; andesite; dacite; rhyolite.II. Alkaline Rocks:A. Alkali olivine basalt series:(1) Alkalic picrite–basalt; ankaramite; alkali basalt; hawaiite; mugearite; benmorite; trachyte.(2) Alkalic picrite–basalt; ankaramite; alkali basalt; trachybasalt; tristanite; trachyte.B. Nephelinic, leucitic, and analcitic rocks.III. Peralkaline Rocks:pantellerite, commendite, etc.

5,676 citations

Journal ArticleDOI
Abstract: Analytical data for Sr, Rb, Cs, Ba, Pb, rare earth elements, Y, Th, U, Zr, Hf, Sn, Nb, Mo, Ni, Co, V, Cr, Sc, Cu and major elements are reported for eocene volcanic rocks cropping out in the Kastamonu area, Pontic chain of Northern Turkey. SiO2% versus K2O% relationship shows that the analyzed samples belong to two major groups: the basaltic andesitic and the andesitic ones. High-K basaltic andesites and low-K andesites occur too. Although emplaced on continental type basement (the North Anatolian Crystalline Swell), the Pontic eocene volcanics show elemental abundances closely comparable with typical island arc calc-alkaline suites, e.g. low SiO2% range, low to moderate K2O% and large cations (Cs, Rb, Sr, Ba, Pb) contents and REE patterns with fractionated light and almost flat heavy REE patterns. ΣREE and highly charged cations (Th, U, Hf, Sn, Zr) are slightly higher than typical calc-alkaline values. Ferromagnesian elements show variable values. Within the basaltic andesite group the increase of K%, large cations, ΣREE, La/Yb ratio and high valency cations and the decrease of ferromagnesian element abundances with increasing SiO2% content indicate that the rock types making up this group developed by crystalliquid fractionation of olivine and clinopyroxene from a basic parent magma. Trace element concentration suggest that the andesite group was not derived by crystal-liquid fractionation processes from the basaltic andesites, but could represent a distinct group of rocks derived from a different parent magma.

3,822 citations

Journal ArticleDOI
Abstract: Analyses for Ti, Zr, Y, Nb and Sr in over 200 basaltic rocks from different tectonic settings have been used to construct diagrams in which these settings can usually be identified. Basalts erupted within plates (ocean island and continental basalts) can be identified using a Ti-Zr-Y diagram, ocean-floor basalts, and low-potassium tholeiites and calc-alkali basalts from island arcs can be identified using a Ti-Zr diagram (for altered samples) and a Ti-Zr-Sr diagram (for fresh samples). Y/Nb is suggested as a parameter for indicating whether a basalt is of tholeiitic or alkalic nature. Analyses of dykes and pillow lavas from the Troodos Massif of Cyprus are plotted on these diagrams and appear to the tholeiitic ocean-floor rocks

3,222 citations

Journal ArticleDOI
Abstract: We present the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC). Petrological and geochemical features indicate that these mantle-derived composite xenoliths were formed by silicic melt^lherzolite interaction. The Precambrian zircon ages can be classified into three age groups of 2·4^2·5 Ga, 1·6^2·2 Ga and 0·6^1·2 Ga, coinciding with major geological events in the NCC. These Precambrian zircons fall in the field of continental granitoid rocks in plots of U/Yb vs Hf and Y. Their igneous-type REE patterns and metamorphic zircon type CL images indicate that they were not crystallized during melt^peridotite interaction and subsequent high-pressure metamorphism.The 2·5 Ga zircons have positive eHf(t) values (2·9^10·6), whereas the younger Precambrian zircons are dominated by negative eHf(t) values, indicating an ancient continental crustal origin.These observations suggest that the Precambrian zircons were xenocrysts that survived melting of recycled continental crustal rocks and were then injected with silicate melt into the host peridotite. In addition to the Precambrian zircons, igneous zircons of 315 3 Ma (2 ), 80^170 Ma and 48^64 Ma were separated from the garnet/spinel pyroxenite veins; these provide evidence for lower continental crust and oceanic crust recycling-induced multi-episodic melt^peridotite interactions in the central zone of the NCC. The combination of the positive eHf(t) values (2·91^24·6) of the 315 Ma zircons with the rare occurrence of 302^324 Ma subduction-related diorite^granite plutons in the northern margin of the NCC implies that the 315 Ma igneous zircons might record melt^peridotite interactions in the lithospheric mantle induced by Palaeo-Asian oceanic crust subduction. Igneous zircons of age 80^170 Ma generally coexist with the Precambrian metamorphic zircons and have lower Ce/Yb and Th/U ratios, higher U/Yb ratios and greater negative Eu anomalies.The eHf(t) values of these zircons vary greatly from ^47·6 to 24·6.The 170^110 Ma zircons are generally characterized by negative eHf(t) values, whereas the 110^100 Ma zircons have positive eHf(t) values.These observations suggest that melt^peridotite interactions at 80^170 Ma were induced by partial melting of recycled continental crust. The 48^64 Ma igneous zircons are characterized by negligible Ce anomalies, unusually high REE, U and Th contents, and positive eHf(t) values.These features imply that the melt^peridotite interactions at 48^64 Ma could be associated with a depleted mantle-derived carbonate melt or fluid.

2,259 citations

Network Information
Related Topics (5)
Continental crust

11.1K papers, 677.5K citations

94% related
Mantle (geology)

26.1K papers, 1.3M citations

93% related

18.3K papers, 655.8K citations

93% related

23.7K papers, 786.6K citations

93% related

20.7K papers, 933.1K citations

92% related
No. of papers in the topic in previous years