scispace - formally typeset
Search or ask a question
Topic

Base excision repair

About: Base excision repair is a research topic. Over the lifetime, 4465 publications have been published within this topic receiving 243158 citations.


Papers
More filters
Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis, illustrating how different pathways cooperate to repair damage.
Abstract: BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.

5,650 citations

Book
01 Jan 2006
TL;DR: Nucleotide excision repair in mammalian cells: genes and proteins Mismatch repair The SOS response and recombinational repair in prokaryotes Mutagenesis in proKaryote Mutagenisation in eukaryotes Other DNA damage tolerance responses in eUKaryotes.
Abstract: DNA damage Mutations The reversal of base damage Base excision repair Nucleotide excision repair in prokaryotes Nucleotide excision repair in lower eukaryotes Nucleotide excision repair in mammalian cells: general considerations and chromatin dynamics Nucleotide excision repair in mammalian cells: genes and proteins Mismatch repair The SOS response and recombinational repair in prokaryotes Mutagenesis in prokaryotes Mutagenesis in eukaryotes Other DNA damage tolerance responses in eukaryotes Hereditary diseases with defective responses to DNA damage

5,297 citations

Journal ArticleDOI
22 Apr 1993-Nature
TL;DR: The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.
Abstract: Although DNA is the carrier of genetic information, it has limited chemical stability. Hydrolysis, oxidation and nonenzymatic methylation of DNA occur at significant rates in vivo, and are counteracted by specific DNA repair processes. The spontaneous decay of DNA is likely to be a major factor in mutagenesis, carcinogenesis and ageing, and also sets limits for the recovery of DNA fragments from fossils.

5,209 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Abstract: DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.

3,171 citations

Journal ArticleDOI
TL;DR: This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detectingDNA damage and its future perspectives.
Abstract: Increases in ultraviolet radiation at the Earth's surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane–pyrimidine dimers (CPDs) and 6–4 photoproducts (6–4PPs) and their Dewar valence isomers. However, cells have developed a number of repair or tolerance mechanisms to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

1,655 citations


Network Information
Related Topics (5)
DNA
107.1K papers, 4.7M citations
89% related
RNA
111.6K papers, 5.4M citations
85% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Transcription factor
82.8K papers, 5.4M citations
85% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023128
2022155
2021188
2020188
2019150
2018134