scispace - formally typeset
Search or ask a question
Topic

Base load power plant

About: Base load power plant is a research topic. Over the lifetime, 6121 publications have been published within this topic receiving 96788 citations.


Papers
More filters
Patent
Stephen L. Knupp1
06 May 1992
TL;DR: In this article, the authors proposed a method to allocate a demanded amount of power to a plurality of power output apparatus, each of which has a cost curve associated therewith, such that each of the power output devices supplies a portion of the demanded power, and the total power outputted from the plurality of devices being optimally cost efficient.
Abstract: The method allocates a demanded amount of power to a plurality of power output apparatus, each power output apparatus having a cost curve associated therewith, such that each of the power output apparatus supplies a portion of the demanded power, and the total power outputted from the plurality of power output apparatus being optimally cost efficient. Data is entered for each of the power output apparatus into a controller. Solutions are generated for all possible output power demands using an optimization by parts technique within output power bounds of each of the power output apparatus. The solutions indicate the portion of power each power output apparatus is to supply to provide the total power demanded at the optimal cost efficient. The solutions are stored in tables within a storage unit of the controller. Upon receipt of a demand for power, a search is performed of the solution tables to obtain the amount of power each power output apparatus is to supply to meet the demand. Control signals are then outputted to each of the power output apparatus, the control signals being indicative of the amount of power to be supplied.

29 citations

Proceedings ArticleDOI
26 Jul 2015
TL;DR: In this article, the authors proposed a new way of utilizing wind power, i.e., in-situ consumption, as an alternative to the costly development of long-distance transmission of large-scale wind power.
Abstract: Due to the uneven geographical distribution between load and wind power, currently it is difficult to integrate the large-scale wind power into the State Grid in China. There are significant wind curtailments for wind farms due to system restrictions. This paper proposes a new way of utilizing wind power, i.e. in-situ consumption, as an alternative to the costly development of long-distance transmission of large-scale wind power. Electrolytic aluminum load, which is one of the most typical high energy consuming loads, is employed to absorb the excess wind power in western China. An actual isolated industrial power system for aluminum production driven by wind power and coal-fired power is described. The penetration level of wind power in the isolated power system is up to 48.8%. The power imbalance between generation and load demand caused by wind power fluctuation or the tripping of coal-fired generators can dramatically impact the frequency stability of the isolated power system, which is of small inertia. An on-line identification method of power imbalance based on Wide Area Measurement System (WAMS) is presented. According to the characteristics of the electrolytic aluminum load, a system frequency control method by regulating the bus voltages of aluminum loads to eliminate the power imbalance is introduced. The simulation is done in Real Time Digital Simulator (RTDS) and the results verify the validity of the proposed frequency control method.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate how generator profits are affected by increasing wind generation in the Irish Single Electricity Market and calibrate the model based on the negative correlation between electricity prices and wind generation.

29 citations

Journal ArticleDOI
TL;DR: A model predictive control (MPC)-based algorithm that formulates the BtG integration and accounts for the time-scale discrepancy is developed, and the formulation captures dynamic and algebraic power flow constraints of power networks and is shown to be numerically advantageous.
Abstract: This paper puts forth a mathematical framework for buildings-to-grid (BtG) integration in smart cities. The framework explicitly couples power grid and building’s control actions and operational decisions, and can be utilized by buildings and power grids operators to simultaneously optimize their performance. Simplified dynamics of building clusters and building-integrated power networks with algebraic equations are presented—both operating at different time-scales. A model predictive control-based algorithm that formulates the BtG integration and accounts for the time-scale discrepancy is developed. The formulation captures dynamic and algebraic power flow constraints of power networks and is shown to be numerically advantageous. This paper analytically establishes that the BtG integration yields a reduced total system cost in comparison with decoupled designs where grid and building operators determine their controls separately. The developed framework is tested on standard power networks that include thousands of buildings modeled using industrial data. Case studies demonstrate building energy savings and significant frequency regulation, while these findings carry over in network simulations with nonlinear power flows and mismatch in building model parameters. Finally, simulations indicate that the performance does not significantly worsen when there is uncertainty in the forecasted weather and base load conditions.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a unit commitment formulation for micro-grid that includes a significant number of grid parallel Proton Exchange Membrane-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up/down time constraints.
Abstract: This paper presents a unit commitment formulation for micro-grid that includes a significant number of grid parallel Proton Exchange Membrane-Fuel Cell Power Plants (PEM-FCPPs) with ramping rate and minimum up/down time constraints. The aim of this problem is to determine the optimum size of energy storage like battery storages and use the efficient hydrogen and thermal energy storages and to schedule the committed units' output power while satisfying practical constraints and electrical/thermal load demand over one day with 15 min time step. In order to best use of multiple PEM-FCPPs, hydrogen storage management is carried out. Also, since the electrical and heat load demand are not synchronised, it could be useful to store the extra heat of PEM-FCPPs in the peak electrical load in order to satisfy delayed heat demands. Due to uncertainty nature of electrical/thermal load, photovoltaic and wind turbine output power and market price, a two-stage scenario-based stochastic programming model, where the first stage prescribes the here-and-now variables and the second stage determines the optima value of wait-and-see variables under cost minimization is implemented. For solving the problem, a new enhanced cuckoo optimisation algorithm is presented and successfully applied to two typical micro-grids. Quantitative results show its usefulness.

29 citations


Network Information
Related Topics (5)
Electric power system
133K papers, 1.7M citations
92% related
Wind power
99K papers, 1.5M citations
91% related
Renewable energy
87.6K papers, 1.6M citations
87% related
Energy storage
65.6K papers, 1.1M citations
85% related
Photovoltaic system
103.9K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202299
202170
202073
201989
2018103