scispace - formally typeset
Search or ask a question
Topic

Base station

About: Base station is a research topic. Over the lifetime, 85883 publications have been published within this topic receiving 1019303 citations. The topic is also known as: Mobile phone base stations & BS.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes an improved Network-MIMO TDD architecture achieving spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell (roughly, from 500 to 50 antennas).
Abstract: Time-Division Duplexing (TDD) allows to estimate the downlink channels for an arbitrarily large number of base station antennas from a finite number of orthogonal uplink pilot signals, by exploiting channel reciprocity. Based on this observation, a recently proposed "Massive MIMO" scheme was shown to achieve unprecedented spectral efficiency in realistic conditions of distance-dependent pathloss and channel coherence time and bandwidth. The main focus and contribution of this paper is an improved Network-MIMO TDD architecture achieving spectral efficiencies comparable with "Massive MIMO", with one order of magnitude fewer antennas per active user per cell (roughly, from 500 to 50 antennas). The proposed architecture is based on a family of Network-MIMO schemes defined by small clusters of cooperating base stations, zero-forcing multiuser MIMO precoding with suitable inter-cluster interference mitigation constraints, uplink pilot signals allocation and frequency reuse across cells. The key idea consists of partitioning the users into equivalence classes, optimizing the Network-MIMO scheme for each equivalence class, and letting a scheduler allocate the channel time-frequency dimensions to the different classes in order to maximize a suitable network utility function that captures a desired notion of fairness. This results in a mixed-mode Network-MIMO architecture, where different schemes, each of which is optimized for the served user equivalence class, are multiplexed in time-frequency. In order to carry out the performance analysis and the optimization of the proposed architecture in a systematic and computationally efficient way, we consider the large-system regime where the number of users, the number of antennas, and the channel coherence block length go to infinity with fixed ratios.

438 citations

Journal ArticleDOI
TL;DR: Both theoretical analysis and numerical validations show that the RIS-based system can achieve good sum-rate performance by setting a reasonable size of the RIS and a small number of discrete phase shifts.
Abstract: Reconfigurable intelligent surfaces (RISs) have drawn considerable attention from the research community recently. RISs create favorable propagation conditions by controlling the phase shifts of reflected waves at the surface, thereby enhancing wireless transmissions. In this paper, we study a downlink multi-user system where the transmission from a multi-antenna base station (BS) to various users is achieved by an RIS reflecting the incident signals of the BS towards the users. Unlike most existing works, we consider the practical case where only a limited number of discrete phase shifts can be realized by a finite-sized RIS. A hybrid beamforming scheme is proposed and the sum-rate maximization problem is formulated. Specifically, continuous digital beamforming and discrete RIS-based analog beamforming are performed at the BS and the RIS, respectively, and an iterative algorithm is designed to solve this problem. Both theoretical analysis and numerical validations show that the RIS-based system can achieve good sum-rate performance by setting a reasonable size of the RIS and a small number of discrete phase shifts.

435 citations

Patent
20 Aug 2007
TL;DR: In this article, a method is described for transmitting a training signal from each antenna of a base station to each of a plurality of client devices, each of the client devices analyzing each training signal to generate channel characterization data, and transmitting the characterization data back to the base station.
Abstract: A method is described comprising: transmitting a training signal from each antenna of a base station to each of a plurality of client devices, each of the client devices analyzing each training signal to generate channel characterization data, and transmitting the channel characterization data back to the base station; storing the channel characterization data for each of the plurality of client devices; receiving data to be transmitted to each of the client devices; and precoding the data using the channel characterization data associated with each respective client device to generate precoded data signals for each antenna of the base station; and transmitting the precoded data signals through each antenna of the base station to each respective client device.

432 citations

Journal ArticleDOI
TL;DR: This paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.
Abstract: The millimeter-wave (mmWave) frequency band is seen as a key enabler of multigigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which leads to high directivity gains, fully directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. This paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.

430 citations

Patent
24 Jul 2006
TL;DR: In this paper, a system and device for harvesting various frequencies and polarizations of ambient radio frequency (RF) electromagnetic (EM) energy for making a passive sensor (tag) into an autonomous passive sensor adapted to collect and store data with time-stamping and some primitive computation when necessary even when an interrogating radio frequency identification (RFID) reader is not present (not transmitting).
Abstract: A system and device for harvesting various frequencies and polarizations of ambient radio frequency (RF) electromagnetic (EM) energy for making a passive sensor (tag) into an autonomous passive sensor (tag) adapted to collect and store data with time-stamping and some primitive computation when necessary even when an interrogating radio frequency identification (RFID) reader is not present (not transmitting). A specific source of ambient RF EM energy may include wireless fidelity (WiFi) and/or cellular telephone base stations. The system and device may also allow for the recharging of energy storage units in active and battery assisted passive (BAP) devices. The system could be a “smart building” that uses passive sensors with RF EM energy harvesting capability to sense environmental variables, security breaches, as well as information from “smart appliances” that can be used for a variety of controls and can be accessed locally or remotely over the Internet or cellular networks.

430 citations


Network Information
Related Topics (5)
Wireless
133.4K papers, 1.9M citations
96% related
Wireless network
122.5K papers, 2.1M citations
96% related
Wireless ad hoc network
49K papers, 1.1M citations
94% related
Network packet
159.7K papers, 2.2M citations
94% related
Wireless sensor network
142K papers, 2.4M citations
93% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,277
20222,829
20211,823
20203,484
20194,001
20184,426