scispace - formally typeset
Search or ask a question
Topic

Basis (linear algebra)

About: Basis (linear algebra) is a research topic. Over the lifetime, 14069 publications have been published within this topic receiving 278522 citations. The topic is also known as: Hamel basis & algebraic basis.


Papers
More filters
Journal ArticleDOI
TL;DR: The gradient projection method was originally presented to the American Mathematical Society for solving linear programming problems by Dantzig et al. as discussed by the authors, and has been applied to nonlinear programming problems as well.
Abstract: more constraints or equations, with either a linear or nonlinear objective function. This distinction is made primarily on the basis of the difficulty of solving these two types of nonlinear problems. The first type is the less difficult of the two, and in this, Part I of the paper, it is shown how it is solved by the gradient projection method. It should be noted that since a linear objective function is a special case of a nonlinear objective function, the gradient projection method will also solve a linear programming problem. In Part II of the paper [16], the extension of the gradient projection method to the more difficult problem of nonlinear constraints and equations will be described. The basic paper on linear programming is the paper by Dantzig [5] in which the simplex method for solving the linear programming problem is presented. The nonlinear programming problem is formulated and a necessary and sufficient condition for a constrained maximum is given in terms of an equivalent saddle value problem in the paper by Kuhn and Tucker [10]. Further developments motivated by this paper, including a computational procedure, have been published recently [1]. The gradient projection method was originally presented to the American Mathematical Society

1,142 citations

Journal ArticleDOI
TL;DR: (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations are considered.
Abstract: In this paper we consider (hierarchical, La-grange)reduced basis approximation anda posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equa-tions. The essential ingredients are (primal-dual)Galer-kin projection onto a low-dimensional space associated with a smooth “parametric manifold” - dimension re-duction; efficient and effective greedy sampling meth-ods for identification of optimal and numerically stable approximations - rapid convergence;a posteriori er-ror estimation procedures - rigorous and sharp bounds for the linear-functional outputs of interest; and Offine-Online computational decomposition strategies - min-imummarginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control)and many-query (e.g., design optimization, multi-model/ scale)contexts. We present illustrative results for heat conduction and convection-diffusion,inviscid flow, and linear elasticity; outputs include transport rates, added mass,and stress intensity factors.

1,090 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules, with the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear scaling calculations.
Abstract: The performance of basis sets made of numerical atomic orbitals is explored in density-functional calculations of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous proposals. Strict localization is maintained while ensuring the continuity of the basis-function derivative at the cutoff radius. The basis sets are tested versus converged plane-wave calculations on a significant variety of systems, including covalent, ionic, and metallic. Satisfactory convergence is obtained for reasonably small basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is tested in several cases and it is found to be satisfactory as well.

1,000 citations

Journal ArticleDOI
TL;DR: It is argued that a good choice of basis for (multi)loop integrals can lead to significant simplifications of the differential equations, and criteria for finding an optimal basis are proposed.
Abstract: Scattering amplitudes at loop level can be expressed in terms of Feynman integrals. The latter satisfy partial differential equations in the kinematical variables. We argue that a good choice of basis for (multi)loop integrals can lead to significant simplifications of the differential equations, and propose criteria for finding an optimal basis. This builds on experience obtained in supersymmetric field theories that can be applied successfully to generic quantum field theory integrals. It involves studying leading singularities and explicit integral representations. When the differential equations are cast into canonical form, their solution becomes elementary. The class of functions involved is easily identified, and the solution can be written down to any desired order in ϵ within dimensional regularization. Results obtained in this way are particularly simple and compact. In this Letter, we outline the general ideas of the method and apply them to a two-loop example.

979 citations

Journal ArticleDOI
TL;DR: A simple algorithm for selecting a subset of coordinates with largest sample variances is provided, and it is shown that if PCA is done on the selected subset, then consistency is recovered, even if p(n) ≫ n.
Abstract: Principal components analysis (PCA) is a classic method for the reduction of dimensionality of data in the form of n observations (or cases) of a vector with p variables. Contemporary datasets often have p comparable with or even much larger than n. Our main assertions, in such settings, are (a) that some initial reduction in dimensionality is desirable before applying any PCA-type search for principal modes, and (b) the initial reduction in dimensionality is best achieved by working in a basis in which the signals have a sparse representation. We describe a simple asymptotic model in which the estimate of the leading principal component vector via standard PCA is consistent if and only if p(n)/n → 0. We provide a simple algorithm for selecting a subset of coordinates with largest sample variances, and show that if PCA is done on the selected subset, then consistency is recovered, even if p(n) ≫ n.

937 citations


Network Information
Related Topics (5)
Matrix (mathematics)
105.5K papers, 1.9M citations
87% related
Nonlinear system
208.1K papers, 4M citations
81% related
Scattering
152.3K papers, 3M citations
80% related
Artificial neural network
207K papers, 4.5M citations
79% related
Boundary value problem
145.3K papers, 2.7M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20244
20231,321
20222,849
2021714
2020693
2019657