scispace - formally typeset
Search or ask a question
Topic

Basis set

About: Basis set is a research topic. Over the lifetime, 9180 publications have been published within this topic receiving 489016 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of correlation effects in the oxygen atom was conducted, and it was shown that primitive basis sets of primitive Gaussian functions effectively and efficiently describe correlation effects.
Abstract: In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlof, Taylor, and co‐workers have found that basis sets of natural orbitals derived from correlated atomic calculations (ANOs) provide an excellent description of molecular correlation effects. We report here a careful study of correlation effects in the oxygen atom, establishing that compact sets of primitive Gaussian functions effectively and efficiently describe correlation effects i f the exponents of the functions are optimized in atomic correlated calculations, although the primitive (s p) functions for describing correlation effects can be taken from atomic Hartree–Fock calculations i f the appropriate primitive set is used. Test calculations on oxygen‐containing molecules indicate that these primitive basis sets describe molecular correlation effects as well as the ANO sets of Almlof and Taylor. Guided by the calculations on oxygen, basis sets for use in correlated atomic and molecular calculations were developed for all of the first row atoms from boron through neon and for hydrogen. As in the oxygen atom calculations, it was found that the incremental energy lowerings due to the addition of correlating functions fall into distinct groups. This leads to the concept of c o r r e l a t i o n c o n s i s t e n t b a s i s s e t s, i.e., sets which include all functions in a given group as well as all functions in any higher groups. Correlation consistent sets are given for all of the atoms considered. The most accurate sets determined in this way, [5s4p3d2f1g], consistently yield 99% of the correlation energy obtained with the corresponding ANO sets, even though the latter contains 50% more primitive functions and twice as many primitive polarization functions. It is estimated that this set yields 94%–97% of the total (HF+1+2) correlation energy for the atoms neon through boron.

26,705 citations

Journal ArticleDOI
TL;DR: In this article, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

17,871 citations

Journal ArticleDOI
TL;DR: In this article, a contract Gaussian basis set (6•311G) was developed by optimizing exponents and coefficients at the Mo/ller-Plesset (MP) second-order level for the ground states of first-row atoms.
Abstract: A contracted Gaussian basis set (6‐311G**) is developed by optimizing exponents and coefficients at the Mo/ller–Plesset (MP) second‐order level for the ground states of first‐row atoms. This has a triple split in the valence s and p shells together with a single set of uncontracted polarization functions on each atom. The basis is tested by computing structures and energies for some simple molecules at various levels of MP theory and comparing with experiment.

14,120 citations

Journal ArticleDOI
TL;DR: In this paper, a split-valence extended gaussian basis set was used to obtain the LCAO-MO-SCF energies of closed shell species with two non-hydrogen atoms.
Abstract: Polarization functions are added in two steps to a split-valence extended gaussian basis set: d-type gaussians on the first row atoms C. N, O and F and p-type gaussians on hydrogen. The same d-exponent of 0.8 is found to be satisfactory for these four atoms and the hydrogen p-exponent of 1.1 is adequate in their hydrides. The energy lowering due to d functions is found to depend on the local symmetry around the heavy atom. For the particular basis used, the energy lowerings due to d functions for various environments around the heavy atom are tabulated. These bases are then applied to a set of molecules containing up to two heavy atoms to obtain their LCAO-MO-SCF energies. The mean absolute deviation between theory and experiment (where available) for heats of hydrogenation of closed shell species with two non-hydrogen atoms is 4 kcal/mole for the basis set with full polarization. Estimates of hydrogenation energy errors at the Hartree-Fock limit, based on available calculations, are given.

12,669 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
96% related
Molecule
52.4K papers, 1.2M citations
88% related
Excited state
102.2K papers, 2.2M citations
88% related
Ground state
70K papers, 1.5M citations
88% related
Density functional theory
66.1K papers, 2.1M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023191
2022468
2021158
2020180
2019190
2018181