Topic
Bat algorithm
About: Bat algorithm is a research topic. Over the lifetime, 1993 publications have been published within this topic receiving 36094 citations.
Papers
More filters
Posted Content•
TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.
Abstract: Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.
3,528 citations
23 Apr 2010
TL;DR: The Bat Algorithm as mentioned in this paper is based on the echolocation behavior of bats and combines the advantages of existing algorithms into the new bat algorithm to solve many tough optimization problems.
Abstract: Metaheuristic algorithms such as particle swarm optimization, firefly algorithm and harmony search are now becoming powerful methods for solving many tough optimization problems. In this paper, we propose a new metaheuristic method, the Bat Algorithm, based on the echolocation behaviour of bats. We also intend to combine the advantages of existing algorithms into the new bat algorithm. After a detailed formulation and explanation of its implementation, we will then compare the proposed algorithm with other existing algorithms, including genetic algorithms and particle swarm optimization. Simulations show that the proposed algorithm seems much superior to other algorithms, and further studies are also discussed.
3,162 citations
TL;DR: A new nature‐inspired metaheuristic optimization algorithm, called bat algorithm (BA), based on the echolocation behavior of bats is introduced, and the optimal solutions obtained are better than the best solutions obtained by the existing methods.
Abstract: – Nature‐inspired algorithms are among the most powerful algorithms for optimization. The purpose of this paper is to introduce a new nature‐inspired metaheuristic optimization algorithm, called bat algorithm (BA), for solving engineering optimization tasks., – The proposed BA is based on the echolocation behavior of bats. After a detailed formulation and explanation of its implementation, BA is verified using eight nonlinear engineering optimization problems reported in the specialized literature., – BA has been carefully implemented and carried out optimization for eight well‐known optimization tasks; then a comparison has been made between the proposed algorithm and other existing algorithms., – The optimal solutions obtained by the proposed algorithm are better than the best solutions obtained by the existing methods. The unique search features used in BA are analyzed, and their implications for future research are also discussed in detail.
1,316 citations
Book•
17 Feb 2014
TL;DR: This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences, and researchers and engineers as well as experienced experts will also find it a handy reference.
Abstract: Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference.Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literatureProvides a theoretical understanding as well as practical implementation hintsProvides a step-by-step introduction to each algorithm
901 citations
TL;DR: A timely review of the bat algorithm and its new variants and a wide range of diverse applications and case studies are reviewed and summarised briefly here.
Abstract: Bat algorithm BA is a bio-inspired algorithm developed by Xin-She Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last three years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarised briefly here. In addition, we also discuss the essence of an algorithm and the links between algorithms and self-organisation. Further research topics are also discussed.
791 citations