scispace - formally typeset
Search or ask a question
Topic

Battery (electricity)

About: Battery (electricity) is a research topic. Over the lifetime, 169581 publications have been published within this topic receiving 1980112 citations.


Papers
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Abstract: The challenges for further development of Li rechargeable batteries for electric vehicles are reviewed. Most important is safety, which requires development of a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) or a constituent (or additive) that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery. A high Li-ion conductivity (σ Li > 10 ―4 S/cm) in the electrolyte and across the electrode/ electrolyte interface is needed for a power battery. Important also is an increase in the density of the stored energy, which is the product of the voltage and capacity of reversible Li insertion/extraction into/from the electrodes. It will be difficult to design a better anode than carbon, but carbon requires formation of an SEI layer, which involves an irreversible capacity loss. The design of a cathode composed of environmentally benign, low-cost materials that has its electrochemical potential μ C well-matched to the HOMO of the electrolyte and allows access to two Li atoms per transition-metal cation would increase the energy density, but it is a daunting challenge. Two redox couples can be accessed where the cation redox couples are "pinned" at the top of the O 2p bands, but to take advantage of this possibility, it must be realized in a framework structure that can accept more than one Li atom per transition-metal cation. Moreover, such a situation represents an intrinsic voltage limit of the cathode, and matching this limit to the HOMO of the electrolyte requires the ability to tune the intrinsic voltage limit. Finally, the chemical compatibility in the battery must allow a long service life.

8,535 citations

Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

7,404 citations

Journal ArticleDOI
TL;DR: New strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively.
Abstract: Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid–solution range. The solid–solution range, which is...

6,950 citations


Network Information
Related Topics (5)
Anode
139.4K papers, 2.1M citations
82% related
Electrode
226K papers, 2.3M citations
80% related
Electrolyte
124.6K papers, 2.3M citations
78% related
Carbon nanotube
109K papers, 3.6M citations
75% related
Oxide
213.4K papers, 3.6M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
20236,447
202212,829
20217,188
202011,292
201912,808