scispace - formally typeset
Topic

Bayesian probability

About: Bayesian probability is a(n) research topic. Over the lifetime, 26572 publication(s) have been published within this topic receiving 817919 citation(s).

...read more

Papers
More filters

01 Jan 2005-
Abstract: The problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion. These terms are a valid large-sample criterion beyond the Bayesian context, since they do not depend on the a priori distribution.

...read more

33,801 citations


Book
01 Jan 1995-
TL;DR: Detailed notes on Bayesian Computation Basics of Markov Chain Simulation, Regression Models, and Asymptotic Theorems are provided.

...read more

Abstract: FUNDAMENTALS OF BAYESIAN INFERENCE Probability and Inference Single-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian Approaches Hierarchical Models FUNDAMENTALS OF BAYESIAN DATA ANALYSIS Model Checking Evaluating, Comparing, and Expanding Models Modeling Accounting for Data Collection Decision Analysis ADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional Approximations REGRESSION MODELS Introduction to Regression Models Hierarchical Linear Models Generalized Linear Models Models for Robust Inference Models for Missing Data NONLINEAR AND NONPARAMETRIC MODELS Parametric Nonlinear Models Basic Function Models Gaussian Process Models Finite Mixture Models Dirichlet Process Models APPENDICES A: Standard Probability Distributions B: Outline of Proofs of Asymptotic Theorems C: Computation in R and Stan Bibliographic Notes and Exercises appear at the end of each chapter.

...read more

16,069 citations


Journal ArticleDOI
01 May 2012-Systematic Biology
TL;DR: The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly, and provides more output options than previously, including samples of ancestral states, site rates, site dN/dS rations, branch rates, and node dates.

...read more

Abstract: Since its introduction in 2001, MrBayes has grown in popularity as a software package for Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) methods. With this note, we announce the release of version 3.2, a major upgrade to the latest official release presented in 2003. The new version provides convergence diagnostics and allows multiple analyses to be run in parallel with convergence progress monitored on the fly. The introduction of new proposals and automatic optimization of tuning parameters has improved convergence for many problems. The new version also sports significantly faster likelihood calculations through streaming single-instruction-multiple-data extensions (SSE) and support of the BEAGLE library, allowing likelihood calculations to be delegated to graphics processing units (GPUs) on compatible hardware. Speedup factors range from around 2 with SSE code to more than 50 with BEAGLE for codon problems. Checkpointing across all models allows long runs to be completed even when an analysis is prematurely terminated. New models include relaxed clocks, dating, model averaging across time-reversible substitution models, and support for hard, negative, and partial (backbone) tree constraints. Inference of species trees from gene trees is supported by full incorporation of the Bayesian estimation of species trees (BEST) algorithms. Marginal model likelihoods for Bayes factor tests can be estimated accurately across the entire model space using the stepping stone method. The new version provides more output options than previously, including samples of ancestral states, site rates, site d(N)/d(S) rations, branch rates, and node dates. A wide range of statistics on tree parameters can also be output for visualization in FigTree and compatible software.

...read more

14,723 citations


Journal ArticleDOI
TL;DR: The focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normal- ity after transformations and marginalization, and the results are derived as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations.

...read more

Abstract: The Gibbs sampler, the algorithm of Metropolis and similar iterative simulation methods are potentially very helpful for summarizing multivariate distributions. Used naively, however, iterative simulation can give misleading answers. Our methods are simple and generally applicable to the output of any iterative simulation; they are designed for researchers primarily interested in the science underlying the data and models they are analyzing, rather than for researchers interested in the probability theory underlying the iterative simulations themselves. Our recommended strategy is to use several independent sequences, with starting points sampled from an overdispersed distribution. At each step of the iterative simulation, we obtain, for each univariate estimand of interest, a distributional estimate and an estimate of how much sharper the distributional estimate might become if the simulations were continued indefinitely. Because our focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normality after transformations and marginalization, we derive our results as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations. The methods are illustrated on a random-effects mixture model applied to experimental measurements of reaction times of normal and schizophrenic patients.

...read more

12,022 citations


Journal ArticleDOI
Abstract: Summary. We consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined. Using an information theoretic argument we derive a measure pD for the effective number of parameters in a model as the difference between the posterior mean of the deviance and the deviance at the posterior means of the parameters of interest. In general pD approximately corresponds to the trace of the product of Fisher's information and the posterior covariance, which in normal models is the trace of the ‘hat’ matrix projecting observations onto fitted values. Its properties in exponential families are explored. The posterior mean deviance is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual observations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for comparing models, which is related to other information criteria and has an approximate decision theoretic justification. The procedure is illustrated in some examples, and comparisons are drawn with alternative Bayesian and classical proposals. Throughout it is emphasized that the quantities required are trivial to compute in a Markov chain Monte Carlo analysis.

...read more

10,825 citations


Network Information
Related Topics (5)
Bayesian inference

22.4K papers, 820.4K citations

97% related
Prior probability

14.8K papers, 428.9K citations

97% related
Model selection

14.3K papers, 786.2K citations

96% related
Posterior probability

13.7K papers, 475K citations

95% related
Markov chain Monte Carlo

20.1K papers, 746.5K citations

95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202236
20211,718
20201,817
20191,834
20181,565
20171,429

Top Attributes

Show by:

Topic's top 5 most impactful authors

David B. Dunson

96 papers, 18.2K citations

Christian P. Robert

67 papers, 4.4K citations

Aki Vehtari

50 papers, 3K citations

Andrew Gelman

49 papers, 18.1K citations

Dipak K. Dey

41 papers, 2.1K citations