scispace - formally typeset
Search or ask a question
Topic

BB84

About: BB84 is a research topic. Over the lifetime, 1659 publications have been published within this topic receiving 77148 citations.


Papers
More filters
Journal ArticleDOI
Artur Ekert1
TL;DR: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported, based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment andBells theorem is used to test for eavesdropping.
Abstract: Practical application of the generalized Bells theorem in the so-called key distribution process in cryptography is reported. The proposed scheme is based on the Bohms version of the Einstein-Podolsky-Rosen gedanken experiment and Bells theorem is used to test for eavesdropping. © 1991 The American Physical Society.

9,259 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Journal ArticleDOI
Charles H. Bennett1
TL;DR: It is shown that in principle any two nonorthogonal quantum states suffice, and a practical interferometric realization using low-intensity coherent light pulses is described.
Abstract: Quantum techniques for key distribution---the classically impossible task of distributing secret information over an insecure channel whose transmissions are subject to inspection by an eavesdropper, between parties who share no secret initially---have been proposed using (a) four nonorthogonally polarized single-photon states or low-intensity light pulses, and (b) polarization-entangled or spacetime-entangled two-photon states. Here we show that in principle any two nonorthogonal quantum states suffice, and describe a practical interferometric realization using low-intensity coherent light pulses.

2,786 citations


Network Information
Related Topics (5)
Quantum computer
30K papers, 907.2K citations
89% related
Quantum information
22.7K papers, 911.3K citations
89% related
Quantum entanglement
39.5K papers, 1M citations
86% related
Open quantum system
20.4K papers, 924.6K citations
85% related
Quantum
60K papers, 1.2M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202346
2022107
202166
202081
201988
201878