scispace - formally typeset
Search or ask a question
Topic

Belief propagation

About: Belief propagation is a research topic. Over the lifetime, 4758 publications have been published within this topic receiving 154048 citations. The topic is also known as: sum-product message passing.


Papers
More filters
Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

Journal ArticleDOI
TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.
Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations

Proceedings Article
21 Aug 2003
TL;DR: An approach to semi-supervised learning is proposed that is based on a Gaussian random field model, and methods to incorporate class priors and the predictions of classifiers obtained by supervised learning are discussed.
Abstract: An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning problem is then formulated in terms of a Gaussian random field on this graph, where the mean of the field is characterized in terms of harmonic functions, and is efficiently obtained using matrix methods or belief propagation. The resulting learning algorithms have intimate connections with random walks, electric networks, and spectral graph theory. We discuss methods to incorporate class priors and the predictions of classifiers obtained by supervised learning. We also propose a method of parameter learning by entropy minimization, and show the algorithm's ability to perform feature selection. Promising experimental results are presented for synthetic data, digit classification, and text classification tasks.

3,908 citations

Journal ArticleDOI
TL;DR: A simple costless modification to iterative thresholding is introduced making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures, inspired by belief propagation in graphical models.
Abstract: Compressed sensing aims to undersample certain high-dimensional signals yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity–undersampling tradeoff is achieved when reconstructing by convex optimization, which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity–undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity–undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity–undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this apparently very different theoretical formalism.

2,412 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that probabilistic inference using belief networks is NP-hard and that it seems unlikely that an exact algorithm can be developed to perform inference efficiently over all classes of belief networks and that research should be directed toward the design of efficient special-case, average-case and approximation algorithms.

1,877 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
87% related
Wireless network
122.5K papers, 2.1M citations
87% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Wireless
133.4K papers, 1.9M citations
85% related
Deep learning
79.8K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
2022139
2021200
2020287
2019288
2018238