scispace - formally typeset
Search or ask a question
Topic

Bend radius

About: Bend radius is a research topic. Over the lifetime, 3303 publications have been published within this topic receiving 35415 citations. The topic is also known as: minimum bend radius.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a deeply etched SiO2 ridge waveguide including the buffer, core, and cladding is presented for realizing sharp bends, and a detailed analysis of the loss in a bent waveguide is given by using a finite-difference method.
Abstract: A deeply etched SiO2 ridge waveguide including the buffer, core, and cladding is presented for realizing sharp bends. The present SiO2 ridge waveguide has a strong confinement at the lateral direction, while it has a weak confinement at the vertical direction. Due to the strong confinement, a sharp bend (with a very small bending radius of about 10 mum) is obtained for an acceptable bending loss. A detailed analysis of the loss in a bent waveguide is given by using a finite-difference method. In order to reduce the transition loss, a narrow bending section with an optimal lateral offset is used. A low leakage loss is obtained by using wide straight waveguides, and linear tapers are used to connect the wide straight section and narrow bent sections

40 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression is proposed, which allows to predict the resonance frequency and the radiation pattern as a function of the bending radius.
Abstract: Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.

40 citations

Patent
05 Dec 2011
TL;DR: In this paper, the index profile of the inner cladding region is graded with a slope of γn core /R b, where n core is the refractive index of the core region, R b is the bend radius, and γ= 0.6-1.2.
Abstract: A LMA, single-mode optical fiber comprises a core region, an inner cladding region surrounding the core region, and an outer cladding region surrounding the inner cladding region. The inner cladding region is configured to provide bend compensation. In one embodiment the index profile of the inner cladding region is graded with a slope of γn core /R b , where n core is the refractive index of the core region, R b is the bend radius, and γ= 0.6-1.2. In addition, the inner cladding is annular and the ratio of its outer radius to its inner radius is greater than 2. In a preferred embodiment this ratio is greater than 3. The overall index profile may be symmetric or asymmetric.

40 citations

Patent
26 Jun 2008
TL;DR: In this paper, the core and cladding regions are configured to support the propagation of signal light in a fundamental transverse mode and at least one higher-order transversal mode in the core region.
Abstract: The effect of bending is anticipated in an optical fiber design, so that resonant coupling remains an effective strategy for suppressing HOMs. The index profile of the fiber and its bend radius are configured so that there is selective resonant coupling of at least one HOM, but not the fundamental mode, in the bent segment of the fiber. In an illustrative embodiment, the core and cladding regions are configured to support the propagation of signal light in a fundamental transverse mode and at least one higher-order transverse mode in the core region. The cladding region includes an outer cladding region and an annular trench region. The trench region includes at least one axially extending, raised-index pedestal (waveguide) region having a refractive index higher than that of the outer cladding region.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a 3D finite-difference time-domain (3D-FDTD) method to estimate the bending loss of ultrasharp silicon-on-insulator (SOI) nanowires.
Abstract: Ultrasharp silicon-on-insulator (SOI) nanowire bends (with a bending radius of R < 2 mu m) are analyzed numerically. It is shown that the calculated bending losses for ultrasharp bends are overestimated when using a modal analysis method based on finite-difference method. In this case, reliable estimation of the bending loss can be made with a 3-D finite-difference time-domain (3-D-FDTD) method. By using 3-D-FDTD simulation, the losses in SOI nanowire bends with different structures and parameters are studied. By increasing the core width or height of the waveguide, one can reduce the bending loss at longer wavelengths for TE mode while the bending performance at shorter wavelengths degrades due to the multimode effect. Increasing the core height is much more effective to reduce the bending loss of TM mode than increasing core width. The relationship between the intrinsic Q-factor of a microring resonator and the bending radius is also obtained.

39 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
78% related
Laser
353.1K papers, 4.3M citations
78% related
Thin film
275.5K papers, 4.5M citations
78% related
Coating
379.8K papers, 3.1M citations
77% related
Dielectric
169.7K papers, 2.7M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
2022172
202181
2020112
2019135
2018153