scispace - formally typeset
Search or ask a question
Topic

Bending moment

About: Bending moment is a research topic. Over the lifetime, 14577 publications have been published within this topic receiving 158834 citations. The topic is also known as: bending moment.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method.
Abstract: This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension.

85 citations

Journal ArticleDOI
TL;DR: In this article, a new two-dimensional shear deformable beam element is proposed for large deformation problems, and the kinematics of the beam are defined using an exact displacement field, where the rotation angles of the crosssection caused by bending and shear deformation are described separately.

85 citations

Journal ArticleDOI
TL;DR: In this article, a rod-based model for a pneumatically activated soft robot arm is developed, which is based on Euler's theory of the elastica and is arguably the simplest possible model.

84 citations

Journal ArticleDOI
TL;DR: In this paper, a pile-group-supported structure was obtained through dynamic centrifuge model tests, and then used to evaluate a dynamic beam on a nonlinear Winkler foundation (BNWF) analysis method.
Abstract: Experimental data on the seismic response of a pile-group-supported structure was obtained through dynamic centrifuge model tests, and then used to evaluate a dynamic beam on a nonlinear Winkler foundation (BNWF) analysis method. The centrifuge tests included a structure supported on a group of nine piles founded in soft clay overlying dense sand. This structure was subjected to nine earthquake events with peak accelerations ranging from 0.02 to 0.7g. The centrifuge tests and dynamic analysis methods are described. Good agreement was obtained between calculated and recorded structural responses, including superstructure acceleration and displacement, pile cap acceleration and displacement, pile bending moment and axial load, and pile cap rotation. Representative examples of recorded and calculated behavior for the structure and soil profile are presented. Sensitivity of the dynamic BNWF analyses to the numerical model parameters and site response calculations are evaluated. These results provide experimental support for the use of dynamic BNWF analysis methods in seismic soil-pile-structure interaction problems involving pile-group systems.

84 citations

Journal ArticleDOI
TL;DR: A finite element (FE) model of a vehicle occupant’s lower limb was developed in this study to improve understanding of injury mechanisms during traffic crashes and could be used in defining advanced injury criteria of the lower limb and in various applications as an alternative to physical testing.
Abstract: A finite element (FE) model of a vehicle occupant’s lower limb was developed in this study to improve understanding of injury mechanisms during traffic crashes. The reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male was meshed using mostly hexahedral and quadrilateral elements to enhance the computational efficiency of the model. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The models of the femur, tibia, and leg were validated against Post-Mortem Human Surrogate (PMHS) data in various loading conditions which generates the bone fractures observed in traffic accidents. The model was then used to investigate the tolerances of femur and tibia under axial compression and bending. It was shown that the bending moment induced by the axial force reduced the bone tolerance significantly more under posterior-anterior (PA) loading than under anterior-posterior (AP) loading. It is believed that the current lower limb models could be used in defining advanced injury criteria of the lower limb and in various applications as an alternative to physical testing, which may require complex setups and high cost.

84 citations


Network Information
Related Topics (5)
Finite element method
178.6K papers, 3M citations
88% related
Fracture mechanics
58.3K papers, 1.3M citations
86% related
Compressive strength
64.4K papers, 1M citations
84% related
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Vibration
80K papers, 849.3K citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023489
2022961
2021623
2020584
2019660
2018613